# Data Processing Patterns > **Status**: 🚧 Placeholder - Content in development ## Overview Patterns for data analysis, ETL, and processing using Polars, pandas, and other data libraries in UV single-file scripts. ## Topics to Cover - [ ] Polars patterns (recommended for performance) - [ ] Pandas alternatives - [ ] CSV/Excel processing - [ ] JSON data manipulation - [ ] Data validation and cleaning - [ ] Aggregation and transformation - [ ] Memory-efficient processing ## Quick Example ```python #!/usr/bin/env -S uv run # /// script # requires-python = ">=3.11" # dependencies = ["polars>=0.20.0"] # /// import polars as pl def analyze_csv(file_path: str): df = pl.read_csv(file_path) # Basic analysis summary = df.describe() print(summary) # Filter and aggregate result = ( df.filter(pl.col("value") > 100) .groupby("category") .agg(pl.col("value").mean()) ) print(result) ``` ## TODO This file will be expanded to include: - Complete Polars patterns - Performance optimization techniques - Large file processing strategies - Data validation patterns - Export formats and options