Initial commit
This commit is contained in:
54
skills/python-uv-scripts/patterns/data-processing.md
Normal file
54
skills/python-uv-scripts/patterns/data-processing.md
Normal file
@@ -0,0 +1,54 @@
|
||||
# Data Processing Patterns
|
||||
|
||||
> **Status**: 🚧 Placeholder - Content in development
|
||||
|
||||
## Overview
|
||||
|
||||
Patterns for data analysis, ETL, and processing using Polars, pandas, and other data libraries in UV single-file
|
||||
scripts.
|
||||
|
||||
## Topics to Cover
|
||||
|
||||
- [ ] Polars patterns (recommended for performance)
|
||||
- [ ] Pandas alternatives
|
||||
- [ ] CSV/Excel processing
|
||||
- [ ] JSON data manipulation
|
||||
- [ ] Data validation and cleaning
|
||||
- [ ] Aggregation and transformation
|
||||
- [ ] Memory-efficient processing
|
||||
|
||||
## Quick Example
|
||||
|
||||
```python
|
||||
#!/usr/bin/env -S uv run
|
||||
# /// script
|
||||
# requires-python = ">=3.11"
|
||||
# dependencies = ["polars>=0.20.0"]
|
||||
# ///
|
||||
import polars as pl
|
||||
|
||||
def analyze_csv(file_path: str):
|
||||
df = pl.read_csv(file_path)
|
||||
|
||||
# Basic analysis
|
||||
summary = df.describe()
|
||||
print(summary)
|
||||
|
||||
# Filter and aggregate
|
||||
result = (
|
||||
df.filter(pl.col("value") > 100)
|
||||
.groupby("category")
|
||||
.agg(pl.col("value").mean())
|
||||
)
|
||||
print(result)
|
||||
```
|
||||
|
||||
## TODO
|
||||
|
||||
This file will be expanded to include:
|
||||
|
||||
- Complete Polars patterns
|
||||
- Performance optimization techniques
|
||||
- Large file processing strategies
|
||||
- Data validation patterns
|
||||
- Export formats and options
|
||||
Reference in New Issue
Block a user