Initial commit
This commit is contained in:
504
skills/n8n-kafka-workflows/SKILL.md
Normal file
504
skills/n8n-kafka-workflows/SKILL.md
Normal file
@@ -0,0 +1,504 @@
|
||||
---
|
||||
name: n8n-kafka-workflows
|
||||
description: n8n workflow automation with Kafka integration expert. Covers Kafka trigger node, producer node, event-driven workflows, error handling, retries, and no-code/low-code event processing patterns. Activates for n8n kafka, kafka trigger, kafka producer, n8n workflows, event-driven automation, no-code kafka, workflow patterns.
|
||||
---
|
||||
|
||||
# n8n Kafka Workflows Skill
|
||||
|
||||
Expert knowledge of integrating Apache Kafka with n8n workflow automation platform for no-code/low-code event-driven processing.
|
||||
|
||||
## What I Know
|
||||
|
||||
### n8n Kafka Nodes
|
||||
|
||||
**Kafka Trigger Node** (Event Consumer):
|
||||
- Triggers workflow on new Kafka messages
|
||||
- Supports consumer groups
|
||||
- Auto-commit or manual offset management
|
||||
- Multiple topic subscription
|
||||
- Message batching
|
||||
|
||||
**Kafka Producer Node** (Event Publisher):
|
||||
- Sends messages to Kafka topics
|
||||
- Supports key-based partitioning
|
||||
- Header support
|
||||
- Compression (gzip, snappy, lz4)
|
||||
- Batch sending
|
||||
|
||||
**Configuration**:
|
||||
```json
|
||||
{
|
||||
"credentials": {
|
||||
"kafkaApi": {
|
||||
"brokers": "localhost:9092",
|
||||
"clientId": "n8n-workflow",
|
||||
"ssl": false,
|
||||
"sasl": {
|
||||
"mechanism": "plain",
|
||||
"username": "{{$env.KAFKA_USER}}",
|
||||
"password": "{{$env.KAFKA_PASSWORD}}"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## When to Use This Skill
|
||||
|
||||
Activate me when you need help with:
|
||||
- n8n Kafka setup ("Configure Kafka trigger in n8n")
|
||||
- Workflow patterns ("Event-driven automation with n8n")
|
||||
- Error handling ("Retry failed Kafka messages")
|
||||
- Integration patterns ("Enrich Kafka events with HTTP API")
|
||||
- Producer configuration ("Send messages to Kafka from n8n")
|
||||
- Consumer groups ("Process Kafka events in parallel")
|
||||
|
||||
## Common Workflow Patterns
|
||||
|
||||
### Pattern 1: Event-Driven Processing
|
||||
|
||||
**Use Case**: Process Kafka events with HTTP API enrichment
|
||||
|
||||
```
|
||||
[Kafka Trigger] → [HTTP Request] → [Transform] → [Database]
|
||||
↓
|
||||
orders topic
|
||||
↓
|
||||
Get customer data
|
||||
↓
|
||||
Merge order + customer
|
||||
↓
|
||||
Save to PostgreSQL
|
||||
```
|
||||
|
||||
**n8n Workflow**:
|
||||
1. **Kafka Trigger**:
|
||||
- Topic: `orders`
|
||||
- Consumer Group: `order-processor`
|
||||
- Offset: `latest`
|
||||
|
||||
2. **HTTP Request** (Enrich):
|
||||
- URL: `https://api.example.com/customers/{{$json.customerId}}`
|
||||
- Method: GET
|
||||
- Headers: `Authorization: Bearer {{$env.API_TOKEN}}`
|
||||
|
||||
3. **Set Node** (Transform):
|
||||
```javascript
|
||||
return {
|
||||
orderId: $json.order.id,
|
||||
customerId: $json.order.customerId,
|
||||
customerName: $json.customer.name,
|
||||
customerEmail: $json.customer.email,
|
||||
total: $json.order.total,
|
||||
timestamp: new Date().toISOString()
|
||||
};
|
||||
```
|
||||
|
||||
4. **PostgreSQL** (Save):
|
||||
- Operation: INSERT
|
||||
- Table: `enriched_orders`
|
||||
- Columns: Mapped from Set node
|
||||
|
||||
### Pattern 2: Fan-Out (Publish to Multiple Topics)
|
||||
|
||||
**Use Case**: Single event triggers multiple downstream workflows
|
||||
|
||||
```
|
||||
[Kafka Trigger] → [Switch] → [Kafka Producer] (topic: high-value-orders)
|
||||
↓ ↓
|
||||
orders topic └─→ [Kafka Producer] (topic: all-orders)
|
||||
└─→ [Kafka Producer] (topic: analytics)
|
||||
```
|
||||
|
||||
**n8n Workflow**:
|
||||
1. **Kafka Trigger**: Consume `orders`
|
||||
2. **Switch Node**: Route by `total` value
|
||||
- Route 1: `total > 1000` → `high-value-orders` topic
|
||||
- Route 2: Always → `all-orders` topic
|
||||
- Route 3: Always → `analytics` topic
|
||||
3. **Kafka Producer** (x3): Send to respective topics
|
||||
|
||||
### Pattern 3: Retry with Dead Letter Queue (DLQ)
|
||||
|
||||
**Use Case**: Retry failed messages, send to DLQ after 3 attempts
|
||||
|
||||
```
|
||||
[Kafka Trigger] → [Try/Catch] → [Success] → [Kafka Producer] (topic: processed)
|
||||
↓ ↓
|
||||
input topic [Catch Error]
|
||||
↓
|
||||
[Increment Retry Count]
|
||||
↓
|
||||
[If Retry < 3]
|
||||
↓ Yes
|
||||
[Kafka Producer] (topic: input-retry)
|
||||
↓ No
|
||||
[Kafka Producer] (topic: dlq)
|
||||
```
|
||||
|
||||
**n8n Workflow**:
|
||||
1. **Kafka Trigger**: `input` topic
|
||||
2. **Try Node**: HTTP Request (may fail)
|
||||
3. **Catch Node** (Error Handler):
|
||||
- Get retry count from message headers
|
||||
- Increment retry count
|
||||
- If retry < 3: Send to `input-retry` topic
|
||||
- Else: Send to `dlq` topic
|
||||
|
||||
### Pattern 4: Batch Processing with Aggregation
|
||||
|
||||
**Use Case**: Aggregate 100 events, send batch to API
|
||||
|
||||
```
|
||||
[Kafka Trigger] → [Aggregate] → [HTTP Request] → [Kafka Producer]
|
||||
↓ ↓
|
||||
events topic Buffer 100 msgs
|
||||
↓
|
||||
Send batch to API
|
||||
↓
|
||||
Publish results
|
||||
```
|
||||
|
||||
**n8n Workflow**:
|
||||
1. **Kafka Trigger**: Enable batching (100 messages)
|
||||
2. **Aggregate Node**: Combine into array
|
||||
3. **HTTP Request**: POST batch
|
||||
4. **Kafka Producer**: Send results
|
||||
|
||||
### Pattern 5: Change Data Capture (CDC) to Kafka
|
||||
|
||||
**Use Case**: Stream database changes to Kafka
|
||||
|
||||
```
|
||||
[Cron Trigger] → [PostgreSQL] → [Compare] → [Kafka Producer]
|
||||
↓ ↓ ↓
|
||||
Every 1 min Get new rows Find diffs
|
||||
↓
|
||||
Publish changes
|
||||
```
|
||||
|
||||
**n8n Workflow**:
|
||||
1. **Cron**: Every 1 minute
|
||||
2. **PostgreSQL**: SELECT new rows (WHERE updated_at > last_run)
|
||||
3. **Function Node**: Detect changes (INSERT/UPDATE/DELETE)
|
||||
4. **Kafka Producer**: Send CDC events
|
||||
|
||||
## Best Practices
|
||||
|
||||
### 1. Use Consumer Groups for Parallel Processing
|
||||
|
||||
✅ **DO**:
|
||||
```
|
||||
Workflow Instance 1:
|
||||
Consumer Group: order-processor
|
||||
Partition: 0, 1, 2
|
||||
|
||||
Workflow Instance 2:
|
||||
Consumer Group: order-processor
|
||||
Partition: 3, 4, 5
|
||||
```
|
||||
|
||||
❌ **DON'T**:
|
||||
```
|
||||
// WRONG: No consumer group (all instances get all messages!)
|
||||
Consumer Group: (empty)
|
||||
```
|
||||
|
||||
### 2. Handle Errors with Try/Catch
|
||||
|
||||
✅ **DO**:
|
||||
```
|
||||
[Kafka Trigger]
|
||||
↓
|
||||
[Try] → [HTTP Request] → [Success Handler]
|
||||
↓
|
||||
[Catch] → [Error Handler] → [Kafka DLQ]
|
||||
```
|
||||
|
||||
❌ **DON'T**:
|
||||
```
|
||||
// WRONG: No error handling (workflow crashes on failure!)
|
||||
[Kafka Trigger] → [HTTP Request] → [Database]
|
||||
```
|
||||
|
||||
### 3. Use Environment Variables for Credentials
|
||||
|
||||
✅ **DO**:
|
||||
```
|
||||
Kafka Brokers: {{$env.KAFKA_BROKERS}}
|
||||
SASL Username: {{$env.KAFKA_USER}}
|
||||
SASL Password: {{$env.KAFKA_PASSWORD}}
|
||||
```
|
||||
|
||||
❌ **DON'T**:
|
||||
```
|
||||
// WRONG: Hardcoded credentials in workflow!
|
||||
Kafka Brokers: "localhost:9092"
|
||||
SASL Username: "admin"
|
||||
SASL Password: "admin-secret"
|
||||
```
|
||||
|
||||
### 4. Set Explicit Partitioning Keys
|
||||
|
||||
✅ **DO**:
|
||||
```
|
||||
Kafka Producer:
|
||||
Topic: orders
|
||||
Key: {{$json.customerId}} // Partition by customer
|
||||
Message: {{$json}}
|
||||
```
|
||||
|
||||
❌ **DON'T**:
|
||||
```
|
||||
// WRONG: No key (random partitioning!)
|
||||
Kafka Producer:
|
||||
Topic: orders
|
||||
Message: {{$json}}
|
||||
```
|
||||
|
||||
### 5. Monitor Consumer Lag
|
||||
|
||||
**Setup Prometheus metrics export**:
|
||||
```
|
||||
[Cron Trigger] → [Kafka Admin] → [Get Consumer Lag] → [Prometheus]
|
||||
↓ ↓ ↓
|
||||
Every 30s List consumer groups Calculate lag
|
||||
↓
|
||||
Push to Pushgateway
|
||||
```
|
||||
|
||||
## Error Handling Strategies
|
||||
|
||||
### Strategy 1: Exponential Backoff Retry
|
||||
|
||||
```javascript
|
||||
// Function Node (Calculate Backoff)
|
||||
const retryCount = $json.headers?.['retry-count'] || 0;
|
||||
const backoffMs = Math.min(1000 * Math.pow(2, retryCount), 60000); // Max 60 seconds
|
||||
|
||||
return {
|
||||
retryCount: retryCount + 1,
|
||||
backoffMs,
|
||||
nextRetryAt: new Date(Date.now() + backoffMs).toISOString()
|
||||
};
|
||||
```
|
||||
|
||||
**Workflow**:
|
||||
1. Try processing
|
||||
2. On failure: Calculate backoff
|
||||
3. Wait (using Wait node)
|
||||
4. Retry (send to retry topic)
|
||||
5. If max retries reached: Send to DLQ
|
||||
|
||||
### Strategy 2: Circuit Breaker
|
||||
|
||||
```javascript
|
||||
// Function Node (Check Failure Rate)
|
||||
const failures = $json.metrics.failures || 0;
|
||||
const total = $json.metrics.total || 1;
|
||||
const failureRate = failures / total;
|
||||
|
||||
if (failureRate > 0.5) {
|
||||
// Circuit open (too many failures)
|
||||
return { circuitState: 'OPEN', skipProcessing: true };
|
||||
}
|
||||
|
||||
return { circuitState: 'CLOSED', skipProcessing: false };
|
||||
```
|
||||
|
||||
**Workflow**:
|
||||
1. Track success/failure metrics
|
||||
2. Calculate failure rate
|
||||
3. If >50% failures: Open circuit (stop processing)
|
||||
4. Wait 30 seconds
|
||||
5. Try single request (half-open)
|
||||
6. If success: Close circuit (resume)
|
||||
|
||||
### Strategy 3: Idempotent Processing
|
||||
|
||||
```javascript
|
||||
// Function Node (Deduplication)
|
||||
const messageId = $json.headers?.['message-id'];
|
||||
const cache = $('Redis').get(messageId);
|
||||
|
||||
if (cache) {
|
||||
// Already processed, skip
|
||||
return { skip: true, reason: 'duplicate' };
|
||||
}
|
||||
|
||||
// Process and cache
|
||||
await $('Redis').set(messageId, 'processed', { ttl: 3600 });
|
||||
return { skip: false };
|
||||
```
|
||||
|
||||
**Workflow**:
|
||||
1. Extract message ID
|
||||
2. Check Redis cache
|
||||
3. If exists: Skip processing
|
||||
4. Process message
|
||||
5. Store message ID in cache (1 hour TTL)
|
||||
|
||||
## Performance Optimization
|
||||
|
||||
### 1. Batch Processing
|
||||
|
||||
**Enable batching in Kafka Trigger**:
|
||||
```
|
||||
Kafka Trigger:
|
||||
Batch Size: 100
|
||||
Batch Timeout: 5000ms // Max wait 5 seconds
|
||||
```
|
||||
|
||||
**Process batch**:
|
||||
```javascript
|
||||
// Function Node (Batch Transform)
|
||||
const events = $input.all();
|
||||
const transformed = events.map(event => ({
|
||||
id: event.json.id,
|
||||
timestamp: event.json.timestamp,
|
||||
processed: true
|
||||
}));
|
||||
|
||||
return transformed;
|
||||
```
|
||||
|
||||
### 2. Parallel Processing with Split in Batches
|
||||
|
||||
```
|
||||
[Kafka Trigger] → [Split in Batches] → [HTTP Request] → [Aggregate]
|
||||
↓ ↓ ↓
|
||||
1000 events 100 at a time Parallel API calls
|
||||
↓
|
||||
Combine results
|
||||
```
|
||||
|
||||
### 3. Use Compression
|
||||
|
||||
**Kafka Producer**:
|
||||
```
|
||||
Compression: lz4 // Or gzip, snappy
|
||||
Batch Size: 1000 // Larger batches = better compression
|
||||
```
|
||||
|
||||
## Integration Patterns
|
||||
|
||||
### Pattern 1: Kafka + HTTP API Enrichment
|
||||
|
||||
```
|
||||
[Kafka Trigger] → [HTTP Request] → [Transform] → [Kafka Producer]
|
||||
↓ ↓ ↓
|
||||
Raw events Enrich from API Combine data
|
||||
↓
|
||||
Publish enriched
|
||||
```
|
||||
|
||||
### Pattern 2: Kafka + Database Sync
|
||||
|
||||
```
|
||||
[Kafka Trigger] → [PostgreSQL Upsert] → [Kafka Producer]
|
||||
↓ ↓ ↓
|
||||
CDC events Update database Publish success/failure
|
||||
```
|
||||
|
||||
### Pattern 3: Kafka + Email Notifications
|
||||
|
||||
```
|
||||
[Kafka Trigger] → [If Critical] → [Send Email] → [Kafka Producer]
|
||||
↓ ↓ ↓
|
||||
Alerts severity=critical Notify admin
|
||||
↓
|
||||
Publish alert sent
|
||||
```
|
||||
|
||||
### Pattern 4: Kafka + Slack Alerts
|
||||
|
||||
```
|
||||
[Kafka Trigger] → [Transform] → [Slack] → [Kafka Producer]
|
||||
↓ ↓ ↓
|
||||
Errors Format message Send to #alerts
|
||||
↓
|
||||
Publish notification
|
||||
```
|
||||
|
||||
## Testing n8n Workflows
|
||||
|
||||
### Manual Testing
|
||||
|
||||
1. **Test with Sample Data**:
|
||||
- Right-click node → "Add Sample Data"
|
||||
- Execute workflow
|
||||
- Check outputs
|
||||
|
||||
2. **Test Kafka Producer**:
|
||||
```bash
|
||||
# Consume test topic
|
||||
kcat -C -b localhost:9092 -t test-output -o beginning
|
||||
```
|
||||
|
||||
3. **Test Kafka Trigger**:
|
||||
```bash
|
||||
# Produce test message
|
||||
echo '{"test": "data"}' | kcat -P -b localhost:9092 -t test-input
|
||||
```
|
||||
|
||||
### Automated Testing
|
||||
|
||||
**n8n CLI**:
|
||||
```bash
|
||||
# Execute workflow with input
|
||||
n8n execute workflow --file workflow.json --input data.json
|
||||
|
||||
# Export workflow
|
||||
n8n export:workflow --id=123 --output=workflow.json
|
||||
```
|
||||
|
||||
## Common Issues & Solutions
|
||||
|
||||
### Issue 1: Consumer Lag Building Up
|
||||
|
||||
**Symptoms**: Processing slower than message arrival
|
||||
|
||||
**Solutions**:
|
||||
1. Increase consumer group size (parallel processing)
|
||||
2. Enable batching (process 100 messages at once)
|
||||
3. Optimize HTTP requests (use connection pooling)
|
||||
4. Use Split in Batches for parallel processing
|
||||
|
||||
### Issue 2: Duplicate Messages
|
||||
|
||||
**Cause**: At-least-once delivery, no deduplication
|
||||
|
||||
**Solution**: Add idempotency check:
|
||||
```javascript
|
||||
// Check if message already processed
|
||||
const messageId = $json.headers?.['message-id'];
|
||||
const exists = await $('Redis').exists(messageId);
|
||||
|
||||
if (exists) {
|
||||
return { skip: true };
|
||||
}
|
||||
```
|
||||
|
||||
### Issue 3: Workflow Execution Timeout
|
||||
|
||||
**Cause**: Long-running HTTP requests
|
||||
|
||||
**Solution**: Use async patterns:
|
||||
```
|
||||
[Kafka Trigger] → [Webhook] → [Wait for Webhook] → [Process Response]
|
||||
↓ ↓
|
||||
Trigger job Async callback
|
||||
↓
|
||||
Continue workflow
|
||||
```
|
||||
|
||||
## References
|
||||
|
||||
- n8n Kafka Trigger: https://docs.n8n.io/integrations/builtin/trigger-nodes/n8n-nodes-base.kafkatrigger/
|
||||
- n8n Kafka Producer: https://docs.n8n.io/integrations/builtin/app-nodes/n8n-nodes-base.kafka/
|
||||
- n8n Best Practices: https://docs.n8n.io/hosting/scaling/best-practices/
|
||||
- Workflow Examples: https://n8n.io/workflows
|
||||
|
||||
---
|
||||
|
||||
**Invoke me when you need n8n Kafka integration, workflow automation, or event-driven no-code patterns!**
|
||||
Reference in New Issue
Block a user