--- name: time-series-forecaster description: | Time series forecasting with ARIMA, Prophet, LSTM, and statistical methods. Activates for "time series", "forecasting", "predict future", "trend analysis", "seasonality", "ARIMA", "Prophet", "sales forecast", "demand prediction", "stock prediction". Handles trend decomposition, seasonality detection, multivariate forecasting, and confidence intervals with SpecWeave increment integration. --- # Time Series Forecaster ## Overview Specialized forecasting pipelines for time-dependent data. Handles trend analysis, seasonality detection, and future predictions using statistical methods, machine learning, and deep learning approaches—all integrated with SpecWeave's increment workflow. ## Why Time Series is Different **Standard ML assumptions violated**: - ❌ Data is NOT independent (temporal correlation) - ❌ Data is NOT identically distributed (trends, seasonality) - ❌ Random train/test split is WRONG (breaks temporal order) **Time series requirements**: - ✅ Temporal order preserved - ✅ No data leakage from future - ✅ Stationarity checks - ✅ Autocorrelation analysis - ✅ Seasonality decomposition ## Forecasting Methods ### 1. Statistical Methods (Baseline) **ARIMA (AutoRegressive Integrated Moving Average)**: ```python from specweave import TimeSeriesForecaster forecaster = TimeSeriesForecaster( method="arima", increment="0042" ) # Automatic order selection (p, d, q) forecaster.fit(train_data) # Forecast next 30 periods forecast = forecaster.predict(horizon=30) # Generates: # - Trend analysis # - Seasonality decomposition # - Autocorrelation plots (ACF, PACF) # - Residual diagnostics # - Forecast with confidence intervals ``` **Seasonal Decomposition**: ```python # Decompose into trend + seasonal + residual decomposition = forecaster.decompose( data=sales_data, model='multiplicative', # Or 'additive' period=12 # Monthly seasonality ) # Creates: # - Trend component plot # - Seasonal component plot # - Residual component plot # - Strength of trend/seasonality metrics ``` ### 2. Prophet (Facebook) **Best for**: Business time series (sales, website traffic, user growth) ```python from specweave import ProphetForecaster forecaster = ProphetForecaster(increment="0042") # Prophet handles: # - Multiple seasonality (daily, weekly, yearly) # - Holidays and events # - Missing data # - Outliers forecaster.fit( data=sales_data, holidays=us_holidays, # Built-in holiday effects seasonality_mode='multiplicative' ) forecast = forecaster.predict(horizon=90) # Generates: # - Trend + seasonality + holiday components # - Change point detection # - Uncertainty intervals # - Cross-validation results ``` **Prophet with Custom Regressors**: ```python # Add external variables (marketing spend, weather, etc.) forecaster.add_regressor("marketing_spend") forecaster.add_regressor("temperature") # Prophet incorporates external factors into forecast ``` ### 3. Deep Learning (LSTM/GRU) **Best for**: Complex patterns, multivariate forecasting, non-linear relationships ```python from specweave import LSTMForecaster forecaster = LSTMForecaster( lookback_window=30, # Use 30 past observations horizon=7, # Predict 7 steps ahead increment="0042" ) # Automatically handles: # - Sequence creation # - Train/val/test split (temporal) # - Scaling # - Early stopping forecaster.fit( data=sensor_data, epochs=100, batch_size=32 ) forecast = forecaster.predict(horizon=7) # Generates: # - Training history plots # - Validation metrics # - Attention weights (if using attention) # - Forecast uncertainty estimation ``` ### 4. Multivariate Forecasting **VAR (Vector AutoRegression)** - Multiple related time series: ```python from specweave import VARForecaster # Forecast multiple related series simultaneously forecaster = VARForecaster(increment="0042") # Example: Forecast sales across multiple stores # Each store's sales affects others forecaster.fit(data={ 'store_1_sales': store1_data, 'store_2_sales': store2_data, 'store_3_sales': store3_data }) forecast = forecaster.predict(horizon=30) # Returns forecasts for all 3 stores ``` ## Time Series Best Practices ### 1. Temporal Train/Test Split ```python # ❌ WRONG: Random split (data leakage!) X_train, X_test = train_test_split(data, test_size=0.2) # ✅ CORRECT: Temporal split split_date = "2024-01-01" train = data[data.index < split_date] test = data[data.index >= split_date] # Or use last N periods as test train = data[:-30] # All but last 30 observations test = data[-30:] # Last 30 observations ``` ### 2. Stationarity Testing ```python from specweave import TimeSeriesAnalyzer analyzer = TimeSeriesAnalyzer(increment="0042") # Check stationarity (required for ARIMA) stationarity = analyzer.check_stationarity(data) if not stationarity['is_stationary']: # Make stationary via differencing data_diff = analyzer.difference(data, order=1) # Or detrend data_detrended = analyzer.detrend(data) ``` **Stationarity Report**: ```markdown # Stationarity Analysis ## ADF Test (Augmented Dickey-Fuller) - Test Statistic: -2.15 - P-value: 0.23 - Critical Value (5%): -2.89 - Result: ❌ NON-STATIONARY (p > 0.05) ## Recommendation Apply differencing (order=1) to remove trend. After differencing: - ADF Test Statistic: -5.42 - P-value: 0.0001 - Result: ✅ STATIONARY ``` ### 3. Seasonality Detection ```python # Automatic seasonality detection seasonality = analyzer.detect_seasonality(data) # Results: # - Daily: False # - Weekly: True (period=7) # - Monthly: True (period=30) # - Yearly: False ``` ### 4. Cross-Validation for Time Series ```python # Time series cross-validation (expanding window) cv_results = forecaster.cross_validate( data=data, horizon=30, # Forecast 30 steps ahead n_splits=5, # 5 expanding windows metric='mape' ) # Visualizes: # - MAPE across different time periods # - Forecast vs actual for each fold # - Model stability over time ``` ### 5. Handling Missing Data ```python # Time series-specific imputation forecaster.handle_missing( method='interpolate', # Or 'forward_fill', 'backward_fill' limit=3 # Max consecutive missing values to fill ) # For seasonal data forecaster.handle_missing( method='seasonal_interpolate', period=12 # Use seasonal pattern to impute ) ``` ## Common Time Series Patterns ### Pattern 1: Sales Forecasting ```python from specweave import SalesForecastPipeline pipeline = SalesForecastPipeline(increment="0042") # Handles: # - Weekly/monthly seasonality # - Holiday effects # - Marketing campaign impact # - Trend changes pipeline.fit( sales_data=daily_sales, holidays=us_holidays, regressors={ 'marketing_spend': marketing_data, 'competitor_price': competitor_data } ) forecast = pipeline.predict(horizon=90) # 90 days ahead # Generates: # - Point forecast # - Prediction intervals (80%, 95%) # - Component analysis (trend, seasonality, regressors) # - Anomaly flags for past data ``` ### Pattern 2: Demand Forecasting ```python from specweave import DemandForecastPipeline # Inventory optimization, supply chain planning pipeline = DemandForecastPipeline( aggregation='daily', # Or 'weekly', 'monthly' increment="0042" ) # Multi-product forecasting forecasts = pipeline.fit_predict( products=['product_A', 'product_B', 'product_C'], horizon=30 ) # Generates: # - Demand forecast per product # - Confidence intervals # - Stockout risk analysis # - Reorder point recommendations ``` ### Pattern 3: Stock Price Prediction ```python from specweave import FinancialForecastPipeline # Stock prices, crypto, forex pipeline = FinancialForecastPipeline(increment="0042") # Handles: # - Volatility clustering # - Non-linear patterns # - Technical indicators pipeline.fit( price_data=stock_prices, features=['volume', 'volatility', 'RSI', 'MACD'] ) forecast = pipeline.predict(horizon=7) # Generates: # - Price forecast with confidence bands # - Volatility forecast (GARCH) # - Trading signals (optional) # - Risk metrics ``` ### Pattern 4: Sensor Data / IoT ```python from specweave import SensorForecastPipeline # Temperature, humidity, machine metrics pipeline = SensorForecastPipeline( method='lstm', # Deep learning for complex patterns increment="0042" ) # Multivariate: Multiple sensor readings pipeline.fit( sensors={ 'temperature': temp_data, 'humidity': humidity_data, 'pressure': pressure_data } ) forecast = pipeline.predict(horizon=24) # 24 hours ahead # Generates: # - Multi-sensor forecasts # - Anomaly detection (unexpected values) # - Maintenance alerts ``` ## Evaluation Metrics **Time series-specific metrics**: ```python from specweave import TimeSeriesEvaluator evaluator = TimeSeriesEvaluator(increment="0042") metrics = evaluator.evaluate( y_true=test_data, y_pred=forecast ) # Metrics: # - MAPE (Mean Absolute Percentage Error) - business-friendly # - RMSE (Root Mean Squared Error) - penalizes large errors # - MAE (Mean Absolute Error) - robust to outliers # - MASE (Mean Absolute Scaled Error) - scale-independent # - Directional Accuracy - did we predict up/down correctly? ``` **Evaluation Report**: ```markdown # Time Series Forecast Evaluation ## Point Metrics - MAPE: 8.2% (target: <10%) ✅ - RMSE: 124.5 - MAE: 98.3 - MASE: 0.85 (< 1 = better than naive forecast) ✅ ## Directional Accuracy - Correct direction: 73% (up/down predictions) ## Forecast Bias - Mean Error: -5.2 (slight under-forecasting) - Bias: -2.1% ## Confidence Intervals - 80% interval coverage: 79.2% ✅ - 95% interval coverage: 94.1% ✅ ## Recommendation ✅ DEPLOY: Model meets accuracy targets and is well-calibrated. ``` ## Integration with SpecWeave ### Increment Structure ``` .specweave/increments/0042-sales-forecast/ ├── spec.md (forecasting requirements, accuracy targets) ├── plan.md (forecasting strategy, method selection) ├── tasks.md ├── data/ │ ├── train_data.csv │ ├── test_data.csv │ └── schema.yaml ├── experiments/ │ ├── arima-baseline/ │ ├── prophet-holidays/ │ └── lstm-multivariate/ ├── models/ │ ├── prophet_model.pkl │ └── lstm_model.h5 ├── forecasts/ │ ├── forecast_2024-01.csv │ ├── forecast_2024-02.csv │ └── forecast_with_intervals.csv └── analysis/ ├── stationarity_test.md ├── seasonality_decomposition.png └── forecast_evaluation.md ``` ### Living Docs Integration ```bash /specweave:sync-docs update ``` Updates: ```markdown ## Sales Forecasting Model (Increment 0042) ### Method Selected: Prophet - Reason: Handles multiple seasonality + holidays well - Alternatives tried: ARIMA (MAPE 12%), LSTM (MAPE 10%) - Prophet: MAPE 8.2% ✅ BEST ### Seasonality Detected - Weekly: Strong (7-day cycle) - Monthly: Moderate (30-day cycle) - Yearly: Weak ### Holiday Effects - Black Friday: +180% sales (strongest) - Christmas: +120% sales - Thanksgiving: +80% sales ### Forecast Horizon - 90 days ahead - Confidence intervals: 80%, 95% - Update frequency: Weekly retraining ### Model Performance - MAPE: 8.2% (target: <10%) - Directional accuracy: 73% - Deployed: 2024-01-15 ``` ## Commands ```bash # Create time series forecast /ml:forecast --horizon 30 --method prophet # Evaluate forecast /ml:evaluate-forecast 0042 # Decompose time series /ml:decompose-timeseries 0042 ``` ## Advanced Features ### 1. Ensemble Forecasting ```python # Combine multiple methods for robustness ensemble = EnsembleForecast(increment="0042") ensemble.add_forecaster("arima", weight=0.3) ensemble.add_forecaster("prophet", weight=0.5) ensemble.add_forecaster("lstm", weight=0.2) # Weighted average of all forecasts forecast = ensemble.predict(horizon=30) # Ensemble typically 10-20% more accurate than single model ``` ### 2. Forecast Reconciliation ```python # For hierarchical time series (e.g., total sales = store1 + store2 + store3) reconciler = ForecastReconciler(increment="0042") # Ensures forecasts sum correctly reconciled = reconciler.reconcile( forecasts={ 'total': total_forecast, 'store1': store1_forecast, 'store2': store2_forecast, 'store3': store3_forecast }, method='bottom_up' # Or 'top_down', 'middle_out' ) ``` ### 3. Forecast Monitoring ```python # Track forecast accuracy over time monitor = ForecastMonitor(increment="0042") # Compare forecasts vs actuals monitor.track_performance( forecasts=past_forecasts, actuals=actual_values ) # Alerts when accuracy degrades if monitor.accuracy_degraded(): print("⚠️ Forecast accuracy dropped 15% - retrain model!") ``` ## Summary Time series forecasting requires specialized techniques: - ✅ Temporal validation (no random split) - ✅ Stationarity testing - ✅ Seasonality detection - ✅ Trend decomposition - ✅ Cross-validation (expanding window) - ✅ Confidence intervals - ✅ Forecast monitoring This skill handles all time series complexity within SpecWeave's increment workflow, ensuring forecasts are reproducible, documented, and production-ready.