--- name: experiment-tracker description: | Manages ML experiment tracking with MLflow, Weights & Biases, or SpecWeave's built-in tracking. Activates for "track experiments", "MLflow", "wandb", "experiment logging", "compare experiments", "hyperparameter tracking". Automatically configures tracking tools to log to SpecWeave increment folders, ensuring all experiments are documented and reproducible. Integrates with SpecWeave's living docs for persistent experiment knowledge. --- # Experiment Tracker ## Overview Transforms chaotic ML experimentation into organized, reproducible research. Every experiment is logged, versioned, and tied to a SpecWeave increment, ensuring team knowledge is preserved and experiments are reproducible. ## Problem This Solves **Without structured tracking**: - ❌ "Which hyperparameters did we use for model v2?" - ❌ "Why did we choose XGBoost over LightGBM?" - ❌ "Can't reproduce results from 3 months ago" - ❌ "Team member left, all knowledge in their notebooks" **With experiment tracking**: - ✅ All experiments logged with params, metrics, artifacts - ✅ Decisions documented ("XGBoost: 5% better precision, chose it") - ✅ Reproducible (environment, data version, code hash) - ✅ Team knowledge in living docs, not individual notebooks ## How It Works ### Auto-Configuration When you create an ML increment, the skill detects tracking tools: ```python # No configuration needed - automatically detects and configures from specweave import track_experiment # Automatically logs to: # .specweave/increments/0042.../experiments/exp-001/ with track_experiment("baseline-model") as exp: model.fit(X_train, y_train) exp.log_metric("accuracy", accuracy) ``` ### Tracking Backends **Option 1: SpecWeave Built-in** (default, zero-config) ```python from specweave import track_experiment # Logs to increment folder automatically with track_experiment("xgboost-v1") as exp: exp.log_param("n_estimators", 100) exp.log_metric("auc", 0.87) exp.save_model(model, "model.pkl") # Creates: # .specweave/increments/0042.../experiments/xgboost-v1/ # ├── params.json # ├── metrics.json # ├── model.pkl # └── metadata.yaml ``` **Option 2: MLflow** (if detected in project) ```python import mlflow from specweave import configure_mlflow # Auto-configures MLflow to log to increment configure_mlflow(increment="0042") with mlflow.start_run(run_name="xgboost-v1"): mlflow.log_param("n_estimators", 100) mlflow.log_metric("auc", 0.87) mlflow.sklearn.log_model(model, "model") # Still logs to increment folder, just uses MLflow as backend ``` **Option 3: Weights & Biases** ```python import wandb from specweave import configure_wandb # Auto-configures W&B project = increment ID configure_wandb(increment="0042") run = wandb.init(name="xgboost-v1") run.log({"auc": 0.87}) run.log_model("model.pkl") # W&B dashboard + local logs in increment folder ``` ### Experiment Comparison ```python from specweave import compare_experiments # Compare all experiments in increment comparison = compare_experiments(increment="0042") # Generates: # .specweave/increments/0042.../experiments/comparison.md ``` **Output**: ```markdown | Experiment | Accuracy | Precision | Recall | F1 | Training Time | |--------------------|----------|-----------|--------|------|---------------| | exp-001-baseline | 0.65 | 0.60 | 0.55 | 0.57 | 2s | | exp-002-xgboost | 0.87 | 0.85 | 0.83 | 0.84 | 45s | | exp-003-lightgbm | 0.86 | 0.84 | 0.82 | 0.83 | 32s | | exp-004-neural-net | 0.85 | 0.83 | 0.81 | 0.82 | 320s | **Best Model**: exp-002-xgboost - Highest accuracy (0.87) - Good precision/recall balance - Reasonable training time (45s) - Selected for deployment ``` ### Living Docs Integration After completing increment: ```bash /specweave:sync-docs update ``` Automatically updates: ```markdown ## Recommendation Model (Increment 0042) ### Experiments Conducted: 7 - exp-001-baseline: Random classifier (acc=0.12) - exp-002-popularity: Popularity baseline (acc=0.18) - exp-003-xgboost: XGBoost classifier (acc=0.26) ✅ **SELECTED** - ... ### Selection Rationale XGBoost chosen for: - Best accuracy (0.26 vs baseline 0.18, +44% improvement) - Fast inference (<50ms) - Good explainability (SHAP values) - Stable across cross-validation (std=0.02) ### Hyperparameters (exp-003) - n_estimators: 200 - max_depth: 6 - learning_rate: 0.1 - subsample: 0.8 ``` ## When to Use This Skill Activate when you need to: - **Track ML experiments** systematically - **Compare multiple models** objectively - **Document experiment decisions** for team - **Reproduce past results** exactly - **Maintain experiment history** across increments ## Key Features ### 1. Automatic Logging ```python # Logs everything automatically from specweave import AutoTracker tracker = AutoTracker(increment="0042") # Just wrap your training code @tracker.track(name="xgboost-auto") def train_model(): model = XGBClassifier(**params) model.fit(X_train, y_train) score = model.score(X_test, y_test) return model, score # Automatically logs: params, metrics, model, environment, git hash model, score = train_model() ``` ### 2. Hyperparameter Tracking ```python from specweave import track_hyperparameters params_grid = { "n_estimators": [100, 200, 500], "max_depth": [3, 6, 9], "learning_rate": [0.01, 0.1, 0.3] } # Tracks all parameter combinations results = track_hyperparameters( model=XGBClassifier, param_grid=params_grid, X_train=X_train, y_train=y_train, increment="0042" ) # Generates parameter importance analysis ``` ### 3. Cross-Validation Tracking ```python from specweave import track_cross_validation # Tracks each fold separately cv_results = track_cross_validation( model=model, X=X, y=y, cv=5, increment="0042" ) # Logs: mean, std, per-fold scores, fold distribution ``` ### 4. Artifact Management ```python from specweave import track_artifacts with track_experiment("xgboost-v1") as exp: # Training artifacts exp.save_artifact("preprocessor.pkl", preprocessor) exp.save_artifact("model.pkl", model) # Evaluation artifacts exp.save_artifact("confusion_matrix.png", cm_plot) exp.save_artifact("roc_curve.png", roc_plot) # Data artifacts exp.save_artifact("feature_importance.csv", importance_df) # Environment artifacts exp.save_artifact("requirements.txt", requirements) exp.save_artifact("conda_env.yaml", conda_env) ``` ### 5. Experiment Metadata ```python from specweave import ExperimentMetadata metadata = ExperimentMetadata( name="xgboost-v3", description="XGBoost with feature engineering v2", tags=["production-candidate", "feature-eng-v2"], git_commit="a3b8c9d", data_version="v2024-01", author="[email protected]" ) with track_experiment(metadata) as exp: # ... training ... pass ``` ## Best Practices ### 1. Name Experiments Clearly ```python # ❌ Bad: Generic names with track_experiment("exp1"): ... # ✅ Good: Descriptive names with track_experiment("xgboost-tuned-depth6-lr0.1"): ... ``` ### 2. Log Everything ```python # Log more than you think you need exp.log_param("random_seed", 42) exp.log_param("data_version", "2024-01") exp.log_param("python_version", sys.version) exp.log_param("sklearn_version", sklearn.__version__) # Future you will thank present you ``` ### 3. Document Failures ```python try: with track_experiment("neural-net-attempt") as exp: model.fit(X_train, y_train) except Exception as e: exp.log_note(f"FAILED: {str(e)}") exp.log_note("Reason: Out of memory, need smaller batch size") exp.set_status("failed") # Failure documentation prevents repeating mistakes ``` ### 4. Use Experiment Series ```python # Related experiments in series experiments = [ "xgboost-baseline", "xgboost-tuned-v1", "xgboost-tuned-v2", "xgboost-tuned-v3-final" ] # Track progression and improvements ``` ### 5. Link to Data Versions ```python with track_experiment("xgboost-v1") as exp: exp.log_param("data_commit", "dvc:a3b8c9d") exp.log_param("data_url", "s3://bucket/data/v2024-01") # Enables exact reproduction ``` ## Integration with SpecWeave ### With Increments ```bash # Experiments automatically tied to increment /specweave:inc "0042-recommendation-model" # All experiments logged to: .specweave/increments/0042.../experiments/ ``` ### With Living Docs ```bash # Sync experiment findings to docs /specweave:sync-docs update # Updates: architecture/ml-models.md, runbooks/model-training.md ``` ### With GitHub ```bash # Create issue for model retraining /specweave:github:create-issue "Retrain model with Q1 2024 data" # Links to previous experiments in increment ``` ## Examples ### Example 1: Baseline Experiments ```python from specweave import track_experiment baselines = ["random", "majority", "stratified"] for strategy in baselines: with track_experiment(f"baseline-{strategy}") as exp: model = DummyClassifier(strategy=strategy) model.fit(X_train, y_train) accuracy = model.score(X_test, y_test) exp.log_metric("accuracy", accuracy) exp.log_note(f"Baseline: {strategy}") # Generates baseline comparison report ``` ### Example 2: Hyperparameter Grid Search ```python from sklearn.model_selection import GridSearchCV from specweave import track_grid_search param_grid = { "n_estimators": [100, 200, 500], "max_depth": [3, 6, 9] } # Automatically logs all combinations best_model, results = track_grid_search( XGBClassifier(), param_grid, X_train, y_train, increment="0042" ) # Creates visualization of parameter importance ``` ### Example 3: Model Comparison ```python from specweave import compare_models models = { "xgboost": XGBClassifier(), "lightgbm": LGBMClassifier(), "random-forest": RandomForestClassifier() } # Trains and compares all models comparison = compare_models( models, X_train, y_train, X_test, y_test, increment="0042" ) # Generates markdown comparison table ``` ## Tool Compatibility ### MLflow ```python # Option 1: Pure MLflow (auto-configured) import mlflow mlflow.set_tracking_uri(".specweave/increments/0042.../experiments") # Option 2: SpecWeave wrapper (recommended) from specweave import mlflow as sw_mlflow with sw_mlflow.start_run("xgboost"): # Logs to both MLflow and increment docs pass ``` ### Weights & Biases ```python # Option 1: Pure wandb import wandb wandb.init(project="0042-recommendation-model") # Option 2: SpecWeave wrapper (recommended) from specweave import wandb as sw_wandb run = sw_wandb.init(increment="0042", name="xgboost") # Syncs to increment folder + W&B dashboard ``` ### TensorBoard ```python from specweave import TensorBoardCallback # Keras callback model.fit( X_train, y_train, callbacks=[ TensorBoardCallback( increment="0042", log_dir=".specweave/increments/0042.../tensorboard" ) ] ) ``` ## Commands ```bash # List all experiments in increment /ml:list-experiments 0042 # Compare experiments /ml:compare-experiments 0042 # Load experiment details /ml:show-experiment exp-003-xgboost # Export experiment data /ml:export-experiments 0042 --format csv ``` ## Tips 1. **Start tracking early** - Track from first experiment, not after 20 failed attempts 2. **Tag production models** - `exp.add_tag("production")` for deployed models 3. **Version everything** - Data, code, environment, dependencies 4. **Document decisions** - Why model A over model B (not just metrics) 5. **Prune old experiments** - Archive experiments >6 months old ## Advanced: Multi-Stage Experiments For complex pipelines with multiple stages: ```python from specweave import ExperimentPipeline pipeline = ExperimentPipeline("recommendation-full-pipeline") # Stage 1: Data preprocessing with pipeline.stage("preprocessing") as stage: stage.log_metric("rows_before", len(df)) df_clean = preprocess(df) stage.log_metric("rows_after", len(df_clean)) # Stage 2: Feature engineering with pipeline.stage("features") as stage: features = engineer_features(df_clean) stage.log_metric("num_features", features.shape[1]) # Stage 3: Model training with pipeline.stage("training") as stage: model = train_model(features) stage.log_metric("accuracy", accuracy) # Logs entire pipeline with stage dependencies ``` ## Integration Points - **ml-pipeline-orchestrator**: Auto-tracks experiments during pipeline execution - **model-evaluator**: Uses experiment data for model comparison - **ml-engineer agent**: Reviews experiment results and suggests improvements - **Living docs**: Syncs experiment findings to architecture docs This skill ensures ML experimentation is never lost, always reproducible, and well-documented.