--- name: model-registry description: | Centralized model versioning, staging, and lifecycle management. Activates for "model registry", "model versioning", "model staging", "deploy to production", "rollback model", "model metadata", "model lineage", "promote model", "model catalog". Manages ML model lifecycle from development through production with SpecWeave increment integration. --- # Model Registry ## Overview Centralized system for managing ML model lifecycle: versioning, staging (dev/staging/prod), metadata tracking, lineage, and rollback. Ensures production models are tracked, reproducible, and can be safely deployed or rolled back—all integrated with SpecWeave's increment workflow. ## Why Model Registry Matters **Without Model Registry**: - ❌ "Which model is in production?" - ❌ "Can't reproduce model from 3 months ago" - ❌ "Breaking change deployed, how to rollback?" - ❌ "Model metadata scattered across notebooks" - ❌ "No audit trail for model changes" **With Model Registry**: - ✅ Single source of truth for all models - ✅ Full version history with metadata - ✅ Safe staging pipeline (dev → staging → prod) - ✅ One-command rollback - ✅ Complete model lineage - ✅ Audit trail for compliance ## Model Registry Structure ### Model Lifecycle Stages ``` Development → Staging → Production → Archived Dev: Training, experimentation Staging: Validation, A/B testing (10% traffic) Prod: Production deployment (100% traffic) Archived: Decommissioned, kept for audit ``` ## Core Operations ### 1. Model Registration ```python from specweave import ModelRegistry registry = ModelRegistry(increment="0042") # Register new model version model_version = registry.register_model( name="fraud-detection-model", model=trained_model, version="v3", metadata={ "algorithm": "XGBoost", "accuracy": 0.87, "precision": 0.85, "recall": 0.62, "training_date": "2024-01-15", "training_data_version": "v2024-01", "hyperparameters": { "n_estimators": 673, "max_depth": 6, "learning_rate": 0.094 }, "features": feature_names, "framework": "xgboost==1.7.0", "python_version": "3.10", "increment": "0042" }, stage="dev", # Initial stage tags=["fraud", "production-candidate"] ) # Creates: # - Model artifact (model.pkl) # - Model metadata (metadata.json) # - Model signature (inputs/outputs) # - Environment file (requirements.txt) # - Feature schema (features.yaml) ``` ### 2. Model Versioning ```python # Semantic versioning: major.minor.patch registry.version_model( name="fraud-detection-model", version_type="minor" # v3.0.0 → v3.1.0 ) # Auto-increments based on changes: # - major: Breaking changes (different features, incompatible) # - minor: Improvements (better accuracy, new features added) # - patch: Bugfixes, retraining (same features, slight changes) ``` ### 3. Model Promotion **Stage Progression**: ```python # Promote from dev to staging registry.promote_model( name="fraud-detection-model", version="v3.1.0", from_stage="dev", to_stage="staging", approval_required=True # Requires review ) # Validate in staging (A/B test) ab_test_results = run_ab_test( control="fraud-detection-v3.0.0", treatment="fraud-detection-v3.1.0", traffic_split=0.1, # 10% to new model duration_days=7 ) # Promote to production if successful if ab_test_results['treatment_is_better']: registry.promote_model( name="fraud-detection-model", version="v3.1.0", from_stage="staging", to_stage="production" ) ``` ### 4. Model Rollback ```python # Rollback to previous version registry.rollback( name="fraud-detection-model", to_version="v3.0.0", # Previous stable version reason="v3.1.0 causing high false positive rate" ) # Automatic rollback triggers: registry.set_auto_rollback_triggers( error_rate_threshold=0.05, # Rollback if >5% errors latency_threshold=200, # Rollback if p95 > 200ms accuracy_drop_threshold=0.10 # Rollback if accuracy drops >10% ) ``` ### 5. Model Retrieval ```python # Get latest production model model = registry.get_model( name="fraud-detection-model", stage="production" ) # Get specific version model_v3 = registry.get_model( name="fraud-detection-model", version="v3.1.0" ) # Get model by date model_jan = registry.get_model_by_date( name="fraud-detection-model", date="2024-01-15" ) ``` ## Model Metadata ### Tracked Metadata ```python model_metadata = { # Core Info "name": "fraud-detection-model", "version": "v3.1.0", "stage": "production", "created_at": "2024-01-15T10:30:00Z", "updated_at": "2024-01-20T14:00:00Z", # Training Info "algorithm": "XGBoost", "framework": "xgboost==1.7.0", "python_version": "3.10", "training_duration": "45min", "training_data_size": "100k rows", # Performance Metrics "accuracy": 0.87, "precision": 0.85, "recall": 0.62, "roc_auc": 0.92, "f1_score": 0.72, # Deployment Info "inference_latency_p50": "35ms", "inference_latency_p95": "80ms", "model_size": "12MB", "cpu_usage": "0.2 cores", "memory_usage": "256MB", # Lineage "increment": "0042-fraud-detection", "experiment": "exp-003-xgboost", "training_data_version": "v2024-01", "feature_engineering_version": "v1", "parent_model": "fraud-detection-v3.0.0", # Features "features": [ "amount_vs_user_average", "days_since_last_purchase", "merchant_risk_score", ... ], "num_features": 35, # Tags & Labels "tags": ["fraud", "production", "high-precision"], "owner": "[email protected]", "approver": "[email protected]" } ``` ## Model Lineage ### Tracking Model Lineage ```python # Full lineage: data → features → training → model lineage = registry.get_lineage( name="fraud-detection-model", version="v3.1.0" ) # Lineage graph: """ data:v2024-01 └─> feature-engineering:v1 └─> experiment:exp-003-xgboost └─> model:fraud-detection-v3.1.0 └─> deployment:production """ # Answer questions like: # - "What data was used to train this model?" # - "Which experiments led to this model?" # - "What models use this feature set?" # - "Impact of changing feature X?" ``` ### Model Comparison ```python # Compare two model versions comparison = registry.compare_models( model_a="fraud-detection-v3.0.0", model_b="fraud-detection-v3.1.0" ) # Output: """ Comparison: v3.0.0 vs v3.1.0 ============================ Metrics: - Accuracy: 0.85 → 0.87 (+2.4%) ✅ - Precision: 0.83 → 0.85 (+2.4%) ✅ - Recall: 0.60 → 0.62 (+3.3%) ✅ Performance: - Latency: 40ms → 35ms (-12.5%) ✅ - Size: 15MB → 12MB (-20.0%) ✅ Features: - Added: merchant_reputation_score - Removed: obsolete_feature_x - Modified: 3 features rescaled Recommendation: ✅ v3.1.0 is better (improvement in all metrics) """ ``` ## Integration with SpecWeave ### Automatic Registration ```python # Models automatically registered during increment completion with track_experiment("xgboost-v1", increment="0042") as exp: model = train_model(X_train, y_train) # Auto-registers model to registry exp.register_model( model=model, name="fraud-detection-model", auto_version=True # Auto-increment version ) ``` ### Increment-Model Mapping ``` .specweave/increments/0042-fraud-detection/ ├── models/ │ ├── fraud-detection-v3.0.0/ │ │ ├── model.pkl │ │ ├── metadata.json │ │ ├── requirements.txt │ │ └── features.yaml │ └── fraud-detection-v3.1.0/ │ ├── model.pkl │ ├── metadata.json │ ├── requirements.txt │ └── features.yaml └── registry/ ├── model_catalog.yaml ├── lineage_graph.json └── deployment_history.md ``` ### Living Docs Integration ```bash /specweave:sync-docs update ``` Updates: ```markdown ## Fraud Detection Model - Production ### Current Production Model - Version: v3.1.0 - Deployed: 2024-01-20 - Accuracy: 87% - Latency: 35ms (p50) ### Version History | Version | Stage | Accuracy | Deployed | Notes | |---------|-------|----------|----------|-------| | v3.1.0 | Prod | 0.87 | 2024-01-20 | Current ✅ | | v3.0.0 | Archived | 0.85 | 2024-01-10 | Replaced by v3.1.0 | | v2.5.0 | Archived | 0.83 | 2023-12-01 | Retired | ### Rollback Plan If v3.1.0 issues detected: 1. Rollback to v3.0.0 (tested, stable) 2. Investigate issue in staging 3. Deploy fix as v3.1.1 ``` ## Model Registry Providers ### MLflow Model Registry ```python from specweave import MLflowRegistry # Use MLflow as backend registry = MLflowRegistry( tracking_uri="http://mlflow.company.com", increment="0042" ) # All SpecWeave operations work with MLflow backend registry.register_model(...) registry.promote_model(...) ``` ### Custom Registry ```python from specweave import CustomRegistry # Use custom storage (S3, GCS, Azure Blob) registry = CustomRegistry( storage_uri="s3://ml-models/registry", increment="0042" ) ``` ## Best Practices ### 1. Semantic Versioning ```python # Breaking change (different features) registry.version_model(version_type="major") # v3.0.0 → v4.0.0 # Feature addition (backward compatible) registry.version_model(version_type="minor") # v3.0.0 → v3.1.0 # Bugfix or retraining (no API change) registry.version_model(version_type="patch") # v3.0.0 → v3.0.1 ``` ### 2. Model Signatures ```python # Document input/output schema registry.set_model_signature( model="fraud-detection-v3.1.0", inputs={ "amount": "float", "merchant_id": "int", "location": "str" }, outputs={ "fraud_probability": "float", "fraud_flag": "bool", "risk_score": "float" } ) # Prevents breaking changes (validate on registration) ``` ### 3. Model Approval Workflow ```python # Require approval before production registry.set_approval_required( stage="production", approvers=["[email protected]", "[email protected]"] ) # Approve model promotion registry.approve_model( name="fraud-detection-model", version="v3.1.0", approver="[email protected]", comments="Tested in staging, accuracy improved 2%, latency reduced 12%" ) ``` ### 4. Model Deprecation ```python # Mark old models as deprecated registry.deprecate_model( name="fraud-detection-model", version="v2.5.0", reason="Superseded by v3.x series", end_of_life="2024-06-01" ) ``` ## Commands ```bash # List all models /ml:registry-list # Get model info /ml:registry-info fraud-detection-model # Promote model /ml:registry-promote fraud-detection-model v3.1.0 --to production # Rollback model /ml:registry-rollback fraud-detection-model --to v3.0.0 # Compare models /ml:registry-compare fraud-detection-model v3.0.0 v3.1.0 ``` ## Advanced Features ### 1. Model Monitoring Integration ```python # Automatically track production model performance monitor = ModelMonitor(registry=registry) monitor.track_model( name="fraud-detection-model", stage="production", metrics=["accuracy", "latency", "error_rate"] ) # Auto-rollback if metrics degrade monitor.set_auto_rollback( metric="accuracy", threshold=0.80, # Rollback if < 80% window="24h" ) ``` ### 2. Model Governance ```python # Compliance and audit trail governance = ModelGovernance(registry=registry) # Generate audit report audit_report = governance.generate_audit_report( model="fraud-detection-model", start_date="2023-01-01", end_date="2024-01-31" ) # Includes: # - All model versions deployed # - Who approved deployments # - Performance metrics over time # - Data sources used # - Compliance checkpoints ``` ### 3. Multi-Environment Registry ```python # Separate registries for dev, staging, prod registry_dev = ModelRegistry(environment="dev") registry_staging = ModelRegistry(environment="staging") registry_prod = ModelRegistry(environment="production") # Promote across environments registry_dev.promote_to( model="fraud-detection-v3.1.0", target_env="staging" ) ``` ## Summary Model Registry is essential for: - ✅ Model versioning (track all model versions) - ✅ Safe deployment (dev → staging → prod pipeline) - ✅ Fast rollback (one-command revert to stable version) - ✅ Audit trail (who deployed what, when, why) - ✅ Model lineage (data → features → model → deployment) - ✅ Compliance (regulatory requirements, governance) This skill brings enterprise-grade model lifecycle management to SpecWeave, ensuring all models are tracked, reproducible, and safely deployed.