--- name: data-visualizer description: | Automated data visualization for EDA, model performance, and business reporting. Activates for "visualize data", "create plots", "EDA", "exploratory analysis", "confusion matrix", "ROC curve", "feature distribution", "correlation heatmap", "plot results", "dashboard". Generates publication-quality visualizations integrated with SpecWeave increments. --- # Data Visualizer ## Overview Automated visualization generation for exploratory data analysis, model performance reporting, and stakeholder communication. Creates publication-quality plots, interactive dashboards, and business-friendly reports—all integrated with SpecWeave's increment workflow. ## Visualization Categories ### 1. Exploratory Data Analysis (EDA) **Automated EDA Report**: ```python from specweave import EDAVisualizer visualizer = EDAVisualizer(increment="0042") # Generates comprehensive EDA report report = visualizer.generate_eda_report(df) # Creates: # - Dataset overview (rows, columns, memory, missing values) # - Numerical feature distributions (histograms + KDE) # - Categorical feature counts (bar charts) # - Correlation heatmap # - Missing value pattern # - Outlier detection plots # - Feature relationships (pairplot for top features) ``` **Individual EDA Plots**: ```python # Distribution plots visualizer.plot_distribution( data=df['age'], title="Age Distribution", bins=30 ) # Correlation heatmap visualizer.plot_correlation_heatmap( data=df[numerical_columns], method='pearson' # or 'spearman', 'kendall' ) # Missing value patterns visualizer.plot_missing_values(df) # Outlier detection (boxplots) visualizer.plot_outliers(df[numerical_columns]) ``` ### 2. Model Performance Visualizations **Classification Performance**: ```python from specweave import ClassificationVisualizer viz = ClassificationVisualizer(increment="0042") # Confusion matrix viz.plot_confusion_matrix( y_true=y_test, y_pred=y_pred, classes=['Negative', 'Positive'] ) # ROC curve viz.plot_roc_curve( y_true=y_test, y_proba=y_proba ) # Precision-Recall curve viz.plot_precision_recall_curve( y_true=y_test, y_proba=y_proba ) # Learning curves (train vs val) viz.plot_learning_curve( train_scores=train_scores, val_scores=val_scores ) # Calibration curve (are probabilities well-calibrated?) viz.plot_calibration_curve( y_true=y_test, y_proba=y_proba ) ``` **Regression Performance**: ```python from specweave import RegressionVisualizer viz = RegressionVisualizer(increment="0042") # Predicted vs Actual viz.plot_predictions( y_true=y_test, y_pred=y_pred ) # Residual plot viz.plot_residuals( y_true=y_test, y_pred=y_pred ) # Residual distribution (should be normal) viz.plot_residual_distribution( residuals=y_test - y_pred ) # Error by feature value viz.plot_error_analysis( y_true=y_test, y_pred=y_pred, features=X_test ) ``` ### 3. Feature Analysis Visualizations **Feature Importance**: ```python from specweave import FeatureVisualizer viz = FeatureVisualizer(increment="0042") # Feature importance (bar chart) viz.plot_feature_importance( feature_names=feature_names, importances=model.feature_importances_, top_n=20 ) # SHAP summary plot viz.plot_shap_summary( shap_values=shap_values, features=X_test ) # Partial dependence plots viz.plot_partial_dependence( model=model, features=['age', 'income'], X=X_train ) # Feature interaction viz.plot_feature_interaction( model=model, features=('age', 'income'), X=X_train ) ``` ### 4. Time Series Visualizations **Time Series Plots**: ```python from specweave import TimeSeriesVisualizer viz = TimeSeriesVisualizer(increment="0042") # Time series with trend viz.plot_timeseries( data=sales_data, show_trend=True ) # Seasonal decomposition viz.plot_seasonal_decomposition( data=sales_data, period=12 # Monthly seasonality ) # Autocorrelation (ACF, PACF) viz.plot_autocorrelation(data=sales_data) # Forecast with confidence intervals viz.plot_forecast( actual=test_data, forecast=forecast, confidence_intervals=(0.80, 0.95) ) ``` ### 5. Model Comparison Visualizations **Compare Multiple Models**: ```python from specweave import ModelComparisonVisualizer viz = ModelComparisonVisualizer(increment="0042") # Compare metrics across models viz.plot_model_comparison( models=['Baseline', 'XGBoost', 'LightGBM', 'Neural Net'], metrics={ 'accuracy': [0.65, 0.87, 0.86, 0.85], 'roc_auc': [0.70, 0.92, 0.91, 0.90], 'training_time': [1, 45, 32, 320] } ) # ROC curves for multiple models viz.plot_roc_curves_comparison( models_predictions={ 'XGBoost': (y_test, y_proba_xgb), 'LightGBM': (y_test, y_proba_lgbm), 'Neural Net': (y_test, y_proba_nn) } ) ``` ## Interactive Visualizations **Plotly Integration**: ```python from specweave import InteractiveVisualizer viz = InteractiveVisualizer(increment="0042") # Interactive scatter plot (zoom, pan, hover) viz.plot_interactive_scatter( x=X_test[:, 0], y=X_test[:, 1], colors=y_pred, hover_data=df[['id', 'amount', 'merchant']] ) # Interactive confusion matrix (click for details) viz.plot_interactive_confusion_matrix( y_true=y_test, y_pred=y_pred ) # Interactive feature importance (sortable, filterable) viz.plot_interactive_feature_importance( feature_names=feature_names, importances=importances ) ``` ## Business Reporting **Automated ML Report**: ```python from specweave import MLReportGenerator generator = MLReportGenerator(increment="0042") # Generate executive summary report report = generator.generate_report( model=model, test_data=(X_test, y_test), business_metrics={ 'false_positive_cost': 5, 'false_negative_cost': 500 } ) # Creates: # - Executive summary (1 page, non-technical) # - Key metrics (accuracy, precision, recall) # - Business impact ($$ saved, ROI) # - Model performance visualizations # - Recommendations # - Technical appendix ``` **Report Output** (HTML/PDF): ```markdown # Fraud Detection Model - Executive Summary ## Key Results - **Accuracy**: 87% (target: >85%) ✅ - **Fraud Detection Rate**: 62% (catching 310 frauds/day) - **False Positive Rate**: 38% (190 false alarms/day) ## Business Impact - **Fraud Prevented**: $155,000/day - **Review Cost**: $950/day (190 transactions × $5) - **Net Benefit**: $154,050/day ✅ - **Annual Savings**: $56.2M ## Model Performance [Confusion Matrix Visualization] [ROC Curve] [Feature Importance] ## Recommendations 1. ✅ Deploy to production immediately 2. Monitor fraud patterns weekly 3. Retrain model monthly with new data ``` ## Dashboard Creation **Real-Time Dashboard**: ```python from specweave import DashboardCreator creator = DashboardCreator(increment="0042") # Create Grafana/Plotly dashboard dashboard = creator.create_dashboard( title="Model Performance Dashboard", panels=[ {'type': 'metric', 'query': 'prediction_latency_p95'}, {'type': 'metric', 'query': 'predictions_per_second'}, {'type': 'timeseries', 'query': 'accuracy_over_time'}, {'type': 'timeseries', 'query': 'error_rate'}, {'type': 'heatmap', 'query': 'prediction_distribution'}, {'type': 'table', 'query': 'recent_anomalies'} ] ) # Exports to Grafana JSON or Plotly Dash app dashboard.export(format='grafana') ``` ## Visualization Best Practices ### 1. Publication-Quality Plots ```python # Set consistent styling visualizer.set_style( style='seaborn', # Or 'ggplot', 'fivethirtyeight' context='paper', # Or 'notebook', 'talk', 'poster' palette='colorblind' # Accessible colors ) # High-resolution exports visualizer.save_figure( filename='model_performance.png', dpi=300, # Publication quality bbox_inches='tight' ) ``` ### 2. Accessible Visualizations ```python # Colorblind-friendly palettes visualizer.use_colorblind_palette() # Add alt text for accessibility visualizer.add_alt_text( plot=fig, description="Confusion matrix showing 87% accuracy" ) # High contrast for presentations visualizer.set_high_contrast_mode() ``` ### 3. Annotation and Context ```python # Add reference lines viz.add_reference_line( y=0.85, # Target accuracy label='Target', color='red', linestyle='--' ) # Add annotations viz.annotate_point( x=optimal_threshold, y=optimal_f1, text='Optimal threshold: 0.47' ) ``` ## Integration with SpecWeave ### Automated Visualization in Increments ```python # All visualizations auto-saved to increment folder visualizer = EDAVisualizer(increment="0042") # Creates: # .specweave/increments/0042-fraud-detection/ # ├── visualizations/ # │ ├── eda/ # │ │ ├── distributions.png # │ │ ├── correlation_heatmap.png # │ │ └── missing_values.png # │ ├── model_performance/ # │ │ ├── confusion_matrix.png # │ │ ├── roc_curve.png # │ │ ├── precision_recall.png # │ │ └── learning_curves.png # │ ├── feature_analysis/ # │ │ ├── feature_importance.png # │ │ ├── shap_summary.png # │ │ └── partial_dependence/ # │ └── reports/ # │ ├── executive_summary.html # │ └── technical_report.pdf ``` ### Living Docs Integration ```bash /specweave:sync-docs update ``` Updates: ```markdown ## Fraud Detection Model Performance (Increment 0042) ### Model Accuracy ![Confusion Matrix](../../../increments/0042-fraud-detection/visualizations/confusion_matrix.png) ### Key Metrics - Accuracy: 87% - Precision: 85% - Recall: 62% - ROC AUC: 0.92 ### Feature Importance ![Top Features](../../../increments/0042-fraud-detection/visualizations/feature_importance.png) Top 5 features: 1. amount_vs_user_average (0.18) 2. days_since_last_purchase (0.12) 3. merchant_risk_score (0.10) 4. velocity_24h (0.08) 5. location_distance_from_home (0.07) ``` ## Commands ```bash # Generate EDA report /ml:visualize-eda 0042 # Generate model performance report /ml:visualize-performance 0042 # Create interactive dashboard /ml:create-dashboard 0042 # Export all visualizations /ml:export-visualizations 0042 --format png,pdf,html ``` ## Advanced Features ### 1. Automated Report Generation ```python # Generate full increment report with all visualizations generator = IncrementReportGenerator(increment="0042") report = generator.generate_full_report() # Includes: # - EDA visualizations # - Experiment comparisons # - Best model performance # - Feature importance # - Business impact # - Deployment readiness ``` ### 2. Custom Visualization Templates ```python # Create reusable templates template = VisualizationTemplate(name="fraud_analysis") template.add_panel("confusion_matrix") template.add_panel("roc_curve") template.add_panel("top_fraud_features") template.add_panel("fraud_trends_over_time") # Apply to any increment template.apply(increment="0042") ``` ### 3. Version Control for Visualizations ```python # Track visualization changes across model versions viz_tracker = VisualizationTracker(increment="0042") # Compare model v1 vs v2 visualizations viz_tracker.compare_versions( version_1="model-v1", version_2="model-v2" ) # Shows: Confusion matrix improved, ROC curve comparison, etc. ``` ## Summary Data visualization is critical for: - ✅ Exploratory data analysis (understand data before modeling) - ✅ Model performance communication (stakeholder buy-in) - ✅ Feature analysis (understand what drives predictions) - ✅ Business reporting (translate metrics to impact) - ✅ Model debugging (identify issues visually) This skill automates visualization generation, ensuring all ML work is visual, accessible, and business-friendly within SpecWeave's increment workflow.