3.1 KiB
3.1 KiB
name, description
| name | description |
|---|---|
| specweave-kafka:mcp-configure | Configure MCP (Model Context Protocol) server for Kafka integration. Auto-detects and configures kanapuli, tuannvm, Joel-hanson, or Confluent MCP servers. |
Configure Kafka MCP Server
Set up MCP (Model Context Protocol) server integration for natural language Kafka operations.
What This Command Does
- MCP Server Detection: Auto-detect installed MCP servers
- Server Ranking: Recommend best server for your needs
- Configuration: Generate Claude Desktop config
- Testing: Verify MCP server connectivity
- Usage Guide: Show natural language examples
Supported MCP Servers
| Server | Language | Features | Best For |
|---|---|---|---|
| Confluent Official | - | Natural language, Flink SQL, Enterprise | Production + Confluent Cloud |
| tuannvm/kafka-mcp-server | Go | Advanced SASL (SCRAM-SHA-256/512) | Security-focused deployments |
| kanapuli/mcp-kafka | Node.js | Basic operations, SASL_PLAINTEXT | Quick start, dev environments |
| Joel-hanson/kafka-mcp-server | Python | Claude Desktop integration | Desktop AI workflows |
Example Usage
# Start MCP configuration wizard
/specweave-kafka:mcp-configure
# I'll:
# 1. Detect installed MCP servers (npm, go, pip, CLI)
# 2. Rank servers (Confluent > tuannvm > kanapuli > Joel-hanson)
# 3. Generate Claude Desktop config (~/.claude/settings.json)
# 4. Test connection to Kafka
# 5. Show natural language examples
What Gets Configured
Claude Desktop Config (~/.claude/settings.json):
{
"mcpServers": {
"kafka": {
"command": "npx",
"args": ["mcp-kafka"],
"env": {
"KAFKA_BROKERS": "localhost:9092",
"KAFKA_SASL_USERNAME": "admin",
"KAFKA_SASL_PASSWORD": "admin-secret"
}
}
}
}
Natural Language Examples
After MCP is configured, you can use natural language with Claude:
You: "List all Kafka topics"
Claude: [Uses MCP to call listTopics()]
Output: user-events, order-events, payment-events
You: "Create a topic called 'analytics' with 12 partitions and RF=3"
Claude: [Uses MCP to call createTopic()]
Output: Topic 'analytics' created successfully
You: "What's the consumer lag for group 'orders-consumer'?"
Claude: [Uses MCP to call getConsumerGroupOffsets()]
Output: Total lag: 1,234 messages across 6 partitions
You: "Send a test message to 'user-events' topic"
Claude: [Uses MCP to call produceMessage()]
Output: Message sent to partition 3, offset 12345
Prerequisites
- Node.js 18+ (for kanapuli or Joel-hanson)
- Go 1.20+ (for tuannvm)
- Confluent Cloud account (for Confluent MCP)
- Kafka cluster accessible from your machine
Post-Configuration
After MCP is configured, I'll:
- ✅ Restart Claude Desktop (required for MCP changes)
- ✅ Test MCP server with simple command
- ✅ Show 10+ natural language examples
- ✅ Provide troubleshooting tips if connection fails
Skills Activated: kafka-mcp-integration Related Commands: /specweave-kafka:deploy, /specweave-kafka:dev-env MCP Docs: https://modelcontextprotocol.io/