--- name: grafana-dashboards description: Create and manage production Grafana dashboards for real-time visualization of system and application metrics. Use when building monitoring dashboards, visualizing metrics, or creating operational observability interfaces. --- # Grafana Dashboards Create and manage production-ready Grafana dashboards for comprehensive system observability. ## Purpose Design effective Grafana dashboards for monitoring applications, infrastructure, and business metrics. ## When to Use - Visualize Prometheus metrics - Create custom dashboards - Implement SLO dashboards - Monitor infrastructure - Track business KPIs ## Dashboard Design Principles ### 1. Hierarchy of Information ``` ┌─────────────────────────────────────┐ │ Critical Metrics (Big Numbers) │ ├─────────────────────────────────────┤ │ Key Trends (Time Series) │ ├─────────────────────────────────────┤ │ Detailed Metrics (Tables/Heatmaps) │ └─────────────────────────────────────┘ ``` ### 2. RED Method (Services) - **Rate** - Requests per second - **Errors** - Error rate - **Duration** - Latency/response time ### 3. USE Method (Resources) - **Utilization** - % time resource is busy - **Saturation** - Queue length/wait time - **Errors** - Error count ## Dashboard Structure ### API Monitoring Dashboard ```json { "dashboard": { "title": "API Monitoring", "tags": ["api", "production"], "timezone": "browser", "refresh": "30s", "panels": [ { "title": "Request Rate", "type": "graph", "targets": [ { "expr": "sum(rate(http_requests_total[5m])) by (service)", "legendFormat": "{{service}}" } ], "gridPos": {"x": 0, "y": 0, "w": 12, "h": 8} }, { "title": "Error Rate %", "type": "graph", "targets": [ { "expr": "(sum(rate(http_requests_total{status=~\"5..\"}[5m])) / sum(rate(http_requests_total[5m]))) * 100", "legendFormat": "Error Rate" } ], "alert": { "conditions": [ { "evaluator": {"params": [5], "type": "gt"}, "operator": {"type": "and"}, "query": {"params": ["A", "5m", "now"]}, "type": "query" } ] }, "gridPos": {"x": 12, "y": 0, "w": 12, "h": 8} }, { "title": "P95 Latency", "type": "graph", "targets": [ { "expr": "histogram_quantile(0.95, sum(rate(http_request_duration_seconds_bucket[5m])) by (le, service))", "legendFormat": "{{service}}" } ], "gridPos": {"x": 0, "y": 8, "w": 24, "h": 8} } ] } } ``` **Reference:** See `assets/api-dashboard.json` ## Panel Types ### 1. Stat Panel (Single Value) ```json { "type": "stat", "title": "Total Requests", "targets": [{ "expr": "sum(http_requests_total)" }], "options": { "reduceOptions": { "values": false, "calcs": ["lastNotNull"] }, "orientation": "auto", "textMode": "auto", "colorMode": "value" }, "fieldConfig": { "defaults": { "thresholds": { "mode": "absolute", "steps": [ {"value": 0, "color": "green"}, {"value": 80, "color": "yellow"}, {"value": 90, "color": "red"} ] } } } } ``` ### 2. Time Series Graph ```json { "type": "graph", "title": "CPU Usage", "targets": [{ "expr": "100 - (avg by (instance) (rate(node_cpu_seconds_total{mode=\"idle\"}[5m])) * 100)" }], "yaxes": [ {"format": "percent", "max": 100, "min": 0}, {"format": "short"} ] } ``` ### 3. Table Panel ```json { "type": "table", "title": "Service Status", "targets": [{ "expr": "up", "format": "table", "instant": true }], "transformations": [ { "id": "organize", "options": { "excludeByName": {"Time": true}, "indexByName": {}, "renameByName": { "instance": "Instance", "job": "Service", "Value": "Status" } } } ] } ``` ### 4. Heatmap ```json { "type": "heatmap", "title": "Latency Heatmap", "targets": [{ "expr": "sum(rate(http_request_duration_seconds_bucket[5m])) by (le)", "format": "heatmap" }], "dataFormat": "tsbuckets", "yAxis": { "format": "s" } } ``` ## Variables ### Query Variables ```json { "templating": { "list": [ { "name": "namespace", "type": "query", "datasource": "Prometheus", "query": "label_values(kube_pod_info, namespace)", "refresh": 1, "multi": false }, { "name": "service", "type": "query", "datasource": "Prometheus", "query": "label_values(kube_service_info{namespace=\"$namespace\"}, service)", "refresh": 1, "multi": true } ] } } ``` ### Use Variables in Queries ``` sum(rate(http_requests_total{namespace="$namespace", service=~"$service"}[5m])) ``` ## Alerts in Dashboards ```json { "alert": { "name": "High Error Rate", "conditions": [ { "evaluator": { "params": [5], "type": "gt" }, "operator": {"type": "and"}, "query": { "params": ["A", "5m", "now"] }, "reducer": {"type": "avg"}, "type": "query" } ], "executionErrorState": "alerting", "for": "5m", "frequency": "1m", "message": "Error rate is above 5%", "noDataState": "no_data", "notifications": [ {"uid": "slack-channel"} ] } } ``` ## Dashboard Provisioning **dashboards.yml:** ```yaml apiVersion: 1 providers: - name: 'default' orgId: 1 folder: 'General' type: file disableDeletion: false updateIntervalSeconds: 10 allowUiUpdates: true options: path: /etc/grafana/dashboards ``` ## Common Dashboard Patterns ### Infrastructure Dashboard **Key Panels:** - CPU utilization per node - Memory usage per node - Disk I/O - Network traffic - Pod count by namespace - Node status **Reference:** See `assets/infrastructure-dashboard.json` ### Database Dashboard **Key Panels:** - Queries per second - Connection pool usage - Query latency (P50, P95, P99) - Active connections - Database size - Replication lag - Slow queries **Reference:** See `assets/database-dashboard.json` ### Application Dashboard **Key Panels:** - Request rate - Error rate - Response time (percentiles) - Active users/sessions - Cache hit rate - Queue length ## Best Practices 1. **Start with templates** (Grafana community dashboards) 2. **Use consistent naming** for panels and variables 3. **Group related metrics** in rows 4. **Set appropriate time ranges** (default: Last 6 hours) 5. **Use variables** for flexibility 6. **Add panel descriptions** for context 7. **Configure units** correctly 8. **Set meaningful thresholds** for colors 9. **Use consistent colors** across dashboards 10. **Test with different time ranges** ## Dashboard as Code ### Terraform Provisioning ```hcl resource "grafana_dashboard" "api_monitoring" { config_json = file("${path.module}/dashboards/api-monitoring.json") folder = grafana_folder.monitoring.id } resource "grafana_folder" "monitoring" { title = "Production Monitoring" } ``` ### Ansible Provisioning ```yaml - name: Deploy Grafana dashboards copy: src: "{{ item }}" dest: /etc/grafana/dashboards/ with_fileglob: - "dashboards/*.json" notify: restart grafana ``` ## Reference Files - `assets/api-dashboard.json` - API monitoring dashboard - `assets/infrastructure-dashboard.json` - Infrastructure dashboard - `assets/database-dashboard.json` - Database monitoring dashboard - `references/dashboard-design.md` - Dashboard design guide ## Related Skills - `prometheus-configuration` - For metric collection - `slo-implementation` - For SLO dashboards