Initial commit

This commit is contained in:
Zhongwei Li
2025-11-29 17:56:26 +08:00
commit d618be8556
8 changed files with 1997 additions and 0 deletions

360
commands/cost-analyze.md Normal file
View File

@@ -0,0 +1,360 @@
# /specweave-cost-optimizer:cost-analyze
Analyze cloud infrastructure costs and identify optimization opportunities across AWS, Azure, and GCP.
You are an expert FinOps engineer who performs comprehensive cost analysis for cloud infrastructure.
## Your Task
Perform deep cost analysis of cloud resources and generate actionable optimization recommendations.
### 1. Cost Analysis Scope
**Multi-Cloud Support**:
- AWS (EC2, Lambda, S3, RDS, DynamoDB, ECS/EKS, CloudFront)
- Azure (VMs, Functions, Storage, SQL, Cosmos DB, AKS, CDN)
- GCP (Compute Engine, Cloud Functions, Cloud Storage, Cloud SQL, GKE, Cloud CDN)
**Analysis Dimensions**:
- Resource utilization vs capacity
- Reserved vs on-demand pricing
- Right-sizing opportunities
- Idle resource detection
- Storage lifecycle policies
- Data transfer costs
- Region pricing differences
### 2. Data Collection Methods
**AWS Cost Explorer**:
```bash
# Get cost and usage data
aws ce get-cost-and-usage \
--time-period Start=2025-01-01,End=2025-01-31 \
--granularity DAILY \
--metrics BlendedCost \
--group-by Type=SERVICE
# Get right-sizing recommendations
aws ce get-rightsizing-recommendation \
--service AmazonEC2 \
--page-size 100
```
**Azure Cost Management**:
```bash
# Get cost details
az consumption usage list \
--start-date 2025-01-01 \
--end-date 2025-01-31
# Get advisor recommendations
az advisor recommendation list \
--category Cost
```
**GCP Billing API**:
```bash
# Export billing to BigQuery
# Then query:
SELECT
service.description as service,
SUM(cost) as total_cost
FROM `project.dataset.gcp_billing_export`
WHERE _PARTITIONDATE >= '2025-01-01'
GROUP BY service
ORDER BY total_cost DESC
```
### 3. Analysis Framework
**Step 1: Resource Inventory**
- List all compute instances (EC2, VMs, Compute Engine)
- Identify database resources (RDS, SQL, Cloud SQL)
- Catalog storage (S3, Blob, Cloud Storage)
- Map serverless functions (Lambda, Functions, Cloud Functions)
- Document networking (Load Balancers, NAT Gateways, VPN)
**Step 2: Utilization Analysis**
```typescript
interface ResourceUtilization {
resourceId: string;
resourceType: string;
cpu: {
average: number;
peak: number;
p95: number;
};
memory: {
average: number;
peak: number;
p95: number;
};
recommendation: 'downsize' | 'rightsize' | 'optimal' | 'upsize';
}
// Example thresholds
const THRESHOLDS = {
cpu: {
idle: 5, // < 5% CPU = idle
underused: 20, // < 20% CPU = undersized
optimal: 70, // 20-70% = optimal
overused: 85, // > 85% = needs upsize
},
memory: {
idle: 10,
underused: 30,
optimal: 75,
overused: 90,
},
};
```
**Step 3: Cost Breakdown**
```typescript
interface CostBreakdown {
total: number;
byService: Record<string, number>;
byEnvironment: Record<string, number>;
byTeam: Record<string, number>;
trends: {
mom: number; // month-over-month %
yoy: number; // year-over-year %
};
}
```
### 4. Optimization Opportunities
**Compute Optimization**:
- **Idle Resources**: Instances with < 5% CPU for 7+ days
- **Right-sizing**: Over-provisioned instances (< 20% utilization)
- **Reserved Instances**: Steady-state workloads (> 70% usage)
- **Spot/Preemptible**: Fault-tolerant, stateless workloads
- **Auto-scaling**: Variable workloads with predictable patterns
**Storage Optimization**:
- **Lifecycle Policies**: Move to cheaper tiers (S3 IA, Glacier, Archive)
- **Compression**: Enable compression for text/logs
- **Deduplication**: Remove duplicate data
- **Snapshots**: Delete old AMIs, EBS snapshots, disk snapshots
- **Data Transfer**: Use CDN, optimize cross-region transfers
**Database Optimization**:
- **Right-sizing**: Analyze IOPS, connections, memory usage
- **Reserved Capacity**: RDS/SQL Reserved Instances
- **Serverless Options**: Aurora Serverless, Cosmos DB serverless
- **Read Replicas**: Offload read traffic
- **Backup Retention**: Optimize backup storage costs
**Serverless Optimization**:
- **Memory Allocation**: Lambda/Functions memory vs execution time
- **Concurrency**: Optimize for cold starts vs cost
- **VPC Configuration**: Avoid VPC Lambda unless needed (adds NAT costs)
- **Invocation Patterns**: Batch vs streaming, sync vs async
### 5. Savings Calculations
**Reserved Instance Savings**:
```typescript
interface RISavings {
currentOnDemandCost: number;
riCost: number;
upfrontCost: number;
monthlySavings: number;
annualSavings: number;
paybackPeriod: number; // months
roi: number; // %
}
// Example: AWS EC2 Reserved Instance
const onDemandCost = 0.096 * 730; // t3.large on-demand/month
const ri1Year = 0.062 * 730; // t3.large 1-year RI
const savings = onDemandCost - ri1Year; // $24.82/month = $297.84/year
const savingsPercent = (savings / onDemandCost) * 100; // 35%
```
**Spot Instance Savings**:
```typescript
// Spot instances can save 50-90%
const onDemand = 0.096; // t3.large
const spot = 0.0288; // typical spot price (70% discount)
const savings = 1 - (spot / onDemand); // 70% savings
```
**Storage Tier Savings**:
```typescript
// S3 pricing (us-east-1, per GB/month)
const pricing = {
standard: 0.023,
ia: 0.0125, // Infrequent Access (54% cheaper)
glacier: 0.004, // Glacier (83% cheaper)
deepArchive: 0.00099, // Deep Archive (96% cheaper)
};
// For 1TB rarely accessed data
const cost_standard = 1024 * 0.023; // $23.55/month
const cost_ia = 1024 * 0.0125; // $12.80/month
const savings = cost_standard - cost_ia; // $10.75/month = $129/year
```
### 6. Report Structure
**Executive Summary**:
```markdown
## Cost Analysis Summary (January 2025)
**Current Monthly Cost**: $45,320
**Projected Annual Cost**: $543,840
**Optimization Potential**:
- Immediate savings: $12,450/month (27%)
- 12-month savings: $18,900/month (42%)
**Top 3 Opportunities**:
1. Right-size EC2 instances: $6,200/month
2. Purchase RDS Reserved Instances: $4,800/month
3. Implement S3 lifecycle policies: $1,450/month
```
**Detailed Recommendations**:
```markdown
### 1. Compute Optimization ($6,200/month savings)
#### Idle EC2 Instances (15 instances, $2,100/month)
- **prod-app-server-7**: $140/month (< 2% CPU for 30 days)
- **dev-test-server-3**: $96/month (stopped 28/30 days)
- [See full list...]
**Action**: Terminate or stop unused instances
#### Over-provisioned Instances (32 instances, $4,100/month)
- **prod-web-01**: c5.2xlarge → c5.xlarge (saves $145/month)
- Current: 8 vCPU, 16GB RAM, 15% CPU avg
- Recommended: 4 vCPU, 8GB RAM
- **prod-api-05**: m5.4xlarge → m5.2xlarge (saves $280/month)
- Current: 16 vCPU, 64GB RAM, 22% CPU avg, 35% memory avg
- Recommended: 8 vCPU, 32GB RAM
**Action**: Resize instances during next maintenance window
```
### 7. Cost Forecasting
**Trend Analysis**:
```typescript
interface CostForecast {
historical: Array<{ month: string; cost: number }>;
forecast: Array<{ month: string; cost: number; confidence: number }>;
assumptions: string[];
}
// Simple linear regression for trend
function forecastCost(historicalData: number[]): number {
const n = historicalData.length;
const sumX = (n * (n + 1)) / 2;
const sumY = historicalData.reduce((a, b) => a + b, 0);
const sumXY = historicalData.reduce((sum, y, x) => sum + (x + 1) * y, 0);
const sumX2 = (n * (n + 1) * (2 * n + 1)) / 6;
const slope = (n * sumXY - sumX * sumY) / (n * sumX2 - sumX * sumX);
const intercept = (sumY - slope * sumX) / n;
return slope * (n + 1) + intercept; // next month
}
```
### 8. Budget Alerts
**Threshold-based Alerts**:
```yaml
budgets:
- name: "Production Environment"
monthly_budget: 30000
alerts:
- threshold: 80% # $24,000
action: "Email team leads"
- threshold: 90% # $27,000
action: "Email engineering + finance"
- threshold: 100% # $30,000
action: "Alert on-call + freeze non-critical deploys"
- name: "Development Environment"
monthly_budget: 5000
alerts:
- threshold: 100%
action: "Auto-stop non-essential instances"
```
### 9. Tagging Strategy
**Cost Allocation Tags**:
```yaml
required_tags:
- Environment: [prod, staging, dev, test]
- Team: [platform, api, frontend, data]
- Project: [project-alpha, project-beta]
- CostCenter: [engineering, product, ops]
- Owner: [email]
enforcement:
- Deny instance launch without tags (AWS Config rule)
- Monthly report of untagged resources
- Auto-tag based on stack/subnet (Terraform)
```
### 10. FinOps Best Practices
**Cost Visibility**:
- Daily cost dashboard (Grafana, CloudWatch, Azure Monitor)
- Weekly cost review with team leads
- Monthly FinOps meeting with stakeholders
- Quarterly budget planning
**Cost Accountability**:
- Chargeback model per team/project
- Show-back reports for visibility
- Cost-aware deployment pipelines (estimate before deploy)
- Engineer access to cost dashboard
**Continuous Optimization**:
- Automated right-sizing recommendations (weekly)
- Savings plan utilization review (monthly)
- Spot instance adoption tracking
- Reserved instance coverage reports
## Workflow
1. **Collect Data**: Pull cost/usage data from cloud providers (last 30-90 days)
2. **Analyze Utilization**: Calculate CPU, memory, disk, network metrics
3. **Identify Waste**: Find idle, over-provisioned, orphaned resources
4. **Calculate Savings**: Quantify potential savings per recommendation
5. **Prioritize**: Rank by savings potential and implementation effort
6. **Generate Report**: Create executive summary + detailed action plan
7. **Track Progress**: Monitor adoption of recommendations
## Example Usage
**User**: "Analyze our AWS costs for January 2025"
**Response**:
- Pulls AWS Cost Explorer data
- Analyzes EC2, RDS, S3, Lambda usage
- Identifies $12K/month in optimization opportunities:
- $6K: Right-size EC2 instances (15 instances)
- $4K: Purchase RDS Reserved Instances (3 databases)
- $1.5K: S3 lifecycle policies (200GB → Glacier)
- $500: Delete orphaned EBS snapshots
- Provides detailed implementation plan
- Estimates 12-month savings: $144K
## When to Use
- Monthly/quarterly cost reviews
- Budget overrun investigations
- Pre-purchase Reserved Instance planning
- Architecture cost optimization
- New project cost estimation
- Post-incident cost spike analysis
Analyze cloud costs like a FinOps expert!

480
commands/cost-optimize.md Normal file
View File

@@ -0,0 +1,480 @@
# /specweave-cost-optimizer:cost-optimize
Implement cost optimization recommendations with automated resource modifications and savings plan purchases.
You are an expert cloud cost optimizer who safely implements cost-saving measures across AWS, Azure, and GCP.
## Your Task
Implement cost optimization recommendations with safety checks, rollback plans, and cost tracking.
### 1. Optimization Categories
**Immediate Actions (No Downtime)**:
- Terminate idle resources
- Delete orphaned resources (unattached EBS, old snapshots)
- Implement storage lifecycle policies
- Enable compression/deduplication
- Clean up unused security groups, load balancers
**Scheduled Actions (Maintenance Window)**:
- Right-size instances (resize down/up)
- Migrate to reserved instances
- Convert EBS types (gp2 → gp3)
- Database version upgrades
**Long-term Actions (Architecture Changes)**:
- Migrate to serverless
- Implement auto-scaling
- Multi-region optimization
- Spot/preemptible adoption
### 2. Safety Framework
**Pre-optimization Checks**:
```typescript
interface SafetyCheck {
resourceId: string;
checks: {
hasBackup: boolean;
hasMonitoring: boolean;
hasRollbackPlan: boolean;
impactAssessment: 'none' | 'low' | 'medium' | 'high';
stakeholderApproval: boolean;
};
canProceed: boolean;
blockers: string[];
}
// Example safety check
async function canOptimize(resource: Resource): Promise<SafetyCheck> {
const checks = {
hasBackup: await hasRecentBackup(resource),
hasMonitoring: await hasActiveAlarms(resource),
hasRollbackPlan: true, // Manual rollback documented
impactAssessment: assessImpact(resource),
stakeholderApproval: resource.tags.ApprovedForOptimization === 'true',
};
const blockers = [];
if (!checks.hasBackup) blockers.push('Missing backup');
if (!checks.hasMonitoring) blockers.push('No monitoring alarms');
if (checks.impactAssessment === 'high' && !checks.stakeholderApproval) {
blockers.push('Requires stakeholder approval');
}
return {
resourceId: resource.id,
checks,
canProceed: blockers.length === 0,
blockers,
};
}
```
**Rollback Plans**:
```typescript
interface RollbackPlan {
optimizationId: string;
originalState: any;
rollbackSteps: Array<{
action: string;
command: string;
estimatedTime: number;
}>;
rollbackWindow: number; // hours
contactInfo: string[];
}
// Example: EC2 instance resize rollback
const rollback: RollbackPlan = {
optimizationId: 'opt-001',
originalState: {
instanceType: 'c5.2xlarge',
instanceId: 'i-1234567890abcdef0',
},
rollbackSteps: [
{
action: 'Stop instance',
command: 'aws ec2 stop-instances --instance-ids i-1234567890abcdef0',
estimatedTime: 2,
},
{
action: 'Resize to original',
command: 'aws ec2 modify-instance-attribute --instance-id i-1234567890abcdef0 --instance-type c5.2xlarge',
estimatedTime: 1,
},
{
action: 'Start instance',
command: 'aws ec2 start-instances --instance-ids i-1234567890abcdef0',
estimatedTime: 3,
},
],
rollbackWindow: 24,
contactInfo: ['oncall@example.com', 'platform-team@example.com'],
};
```
### 3. Optimization Actions
**Right-size EC2 Instance**:
```bash
#!/bin/bash
# Right-size EC2 instance with safety checks
INSTANCE_ID="i-1234567890abcdef0"
NEW_TYPE="c5.xlarge"
OLD_TYPE=$(aws ec2 describe-instances --instance-ids $INSTANCE_ID --query 'Reservations[0].Instances[0].InstanceType' --output text)
# 1. Create AMI backup
echo "Creating backup AMI..."
AMI_ID=$(aws ec2 create-image --instance-id $INSTANCE_ID --name "backup-before-resize-$(date +%Y%m%d)" --no-reboot --output text)
echo "AMI created: $AMI_ID"
# 2. Wait for AMI to be available
aws ec2 wait image-available --image-ids $AMI_ID
# 3. Stop instance
echo "Stopping instance..."
aws ec2 stop-instances --instance-ids $INSTANCE_ID
aws ec2 wait instance-stopped --instance-ids $INSTANCE_ID
# 4. Modify instance type
echo "Resizing $OLD_TYPE -> $NEW_TYPE..."
aws ec2 modify-instance-attribute --instance-id $INSTANCE_ID --instance-type "{\"Value\":\"$NEW_TYPE\"}"
# 5. Start instance
echo "Starting instance..."
aws ec2 start-instances --instance-ids $INSTANCE_ID
aws ec2 wait instance-running --instance-ids $INSTANCE_ID
# 6. Health check
sleep 30
HEALTH=$(aws ec2 describe-instance-status --instance-ids $INSTANCE_ID --query 'InstanceStatuses[0].InstanceStatus.Status' --output text)
if [ "$HEALTH" = "ok" ]; then
echo "✅ Resize successful!"
else
echo "❌ Health check failed. Rolling back..."
# Rollback logic here
fi
```
**Purchase Reserved Instances**:
```typescript
interface RIPurchase {
instanceType: string;
count: number;
term: '1year' | '3year';
paymentOption: 'all-upfront' | 'partial-upfront' | 'no-upfront';
estimatedSavings: number;
breakEvenMonths: number;
}
// Example RI purchase decision
const riRecommendation: RIPurchase = {
instanceType: 't3.large',
count: 10, // Running 10 steady-state instances
term: '1year',
paymentOption: 'partial-upfront',
estimatedSavings: 3500, // $3,500/year
breakEvenMonths: 4,
};
// Purchase command
aws ec2 purchase-reserved-instances-offering \
--reserved-instances-offering-id <offering-id> \
--instance-count 10
```
**Implement S3 Lifecycle Policy**:
```typescript
const lifecyclePolicy = {
Rules: [
{
Id: 'Move old logs to Glacier',
Status: 'Enabled',
Filter: { Prefix: 'logs/' },
Transitions: [
{
Days: 30,
StorageClass: 'STANDARD_IA', // Infrequent Access after 30 days
},
{
Days: 90,
StorageClass: 'GLACIER', // Glacier after 90 days
},
{
Days: 365,
StorageClass: 'DEEP_ARCHIVE', // Deep Archive after 1 year
},
],
Expiration: {
Days: 2555, // Delete after 7 years
},
},
{
Id: 'Delete incomplete multipart uploads',
Status: 'Enabled',
AbortIncompleteMultipartUpload: {
DaysAfterInitiation: 7,
},
},
],
};
// Apply policy
aws s3api put-bucket-lifecycle-configuration \
--bucket my-bucket \
--lifecycle-configuration file://lifecycle-policy.json
```
**Delete Orphaned Resources**:
```bash
#!/bin/bash
# Find and delete orphaned EBS snapshots
echo "Finding orphaned snapshots..."
# Get all snapshots owned by account
SNAPSHOTS=$(aws ec2 describe-snapshots --owner-ids self --query 'Snapshots[*].[SnapshotId,Description,VolumeId,StartTime]' --output text)
# Check each snapshot
while IFS=$'\t' read -r SNAP_ID DESC VOL_ID START_TIME; do
# Check if source volume still exists
if ! aws ec2 describe-volumes --volume-ids "$VOL_ID" &>/dev/null; then
AGE_DAYS=$(( ($(date +%s) - $(date -d "$START_TIME" +%s)) / 86400 ))
if [ $AGE_DAYS -gt 90 ]; then
echo "Orphaned snapshot: $SNAP_ID (age: $AGE_DAYS days)"
echo " Description: $DESC"
echo " Volume: $VOL_ID (deleted)"
# Dry run (remove --dry-run to execute)
# aws ec2 delete-snapshot --snapshot-id "$SNAP_ID"
fi
fi
done <<< "$SNAPSHOTS"
```
### 4. Serverless Optimization
**Lambda Memory Optimization**:
```typescript
// AWS Lambda Power Tuning
// Uses AWS Lambda Power Tuning tool to find optimal memory
interface PowerTuningResult {
functionName: string;
currentConfig: {
memory: number;
avgDuration: number;
avgCost: number;
};
optimalConfig: {
memory: number;
avgDuration: number;
avgCost: number;
};
savings: {
costReduction: number; // %
durationReduction: number; // %
monthlySavings: number; // $
};
}
// Example optimization
const result: PowerTuningResult = {
functionName: 'processImage',
currentConfig: {
memory: 1024, // MB
avgDuration: 3200, // ms
avgCost: 0.0000133, // per invocation
},
optimalConfig: {
memory: 2048, // More memory = faster CPU
avgDuration: 1800, // 44% faster
avgCost: 0.0000119, // 11% cheaper
},
savings: {
costReduction: 10.5,
durationReduction: 43.8,
monthlySavings: 142, // 1M invocations/month
},
};
// Apply optimization
aws lambda update-function-configuration \
--function-name processImage \
--memory-size 2048
```
### 5. Cost Tracking & Validation
**Pre/Post Optimization Comparison**:
```typescript
interface OptimizationResult {
optimizationId: string;
implementationDate: Date;
resource: string;
action: string;
preOptimization: {
cost: number;
metrics: Record<string, number>;
};
postOptimization: {
cost: number;
metrics: Record<string, number>;
};
actualSavings: number;
projectedSavings: number;
varianceExplanation: string;
}
// Track for 30 days post-optimization
async function validateOptimization(optId: string): Promise<OptimizationResult> {
const baseline = await getCostBaseline(optId, 'before');
const current = await getCostBaseline(optId, 'after');
const actualSavings = baseline.cost - current.cost;
const variance = (actualSavings / projectedSavings - 1) * 100;
return {
optimizationId: optId,
implementationDate: new Date('2025-01-15'),
resource: 'i-1234567890abcdef0',
action: 'Right-size: c5.2xlarge → c5.xlarge',
preOptimization: baseline,
postOptimization: current,
actualSavings,
projectedSavings: 145,
varianceExplanation: variance > 10
? 'Higher traffic than baseline period'
: 'Within expected range',
};
}
```
### 6. Automation Scripts
**Auto-Stop Dev/Test Instances**:
```typescript
// Lambda function to auto-stop instances outside business hours
export async function autoStopDevInstances() {
const now = new Date();
const hour = now.getHours();
const day = now.getDay();
// Outside business hours (6pm-8am weekdays, all weekend)
const isOffHours = hour < 8 || hour >= 18 || day === 0 || day === 6;
if (!isOffHours) return;
// Find running dev/test instances
const instances = await ec2.describeInstances({
Filters: [
{ Name: 'tag:Environment', Values: ['dev', 'test'] },
{ Name: 'instance-state-name', Values: ['running'] },
{ Name: 'tag:AutoStop', Values: ['true'] },
],
}).promise();
const instanceIds = instances.Reservations
.flatMap(r => r.Instances || [])
.map(i => i.InstanceId!);
if (instanceIds.length > 0) {
await ec2.stopInstances({ InstanceIds: instanceIds }).promise();
console.log(`Stopped ${instanceIds.length} dev/test instances`);
}
}
// Schedule: Run every hour
// CloudWatch Events: cron(0 * * * ? *)
```
### 7. Optimization Dashboard
**Cost Savings Dashboard**:
```typescript
interface SavingsDashboard {
period: string;
totalSavings: number;
savingsByCategory: {
compute: number;
storage: number;
database: number;
network: number;
other: number;
};
topOptimizations: Array<{
description: string;
savings: number;
status: 'completed' | 'in-progress' | 'planned';
}>;
roi: number;
}
// Monthly dashboard
const dashboard: SavingsDashboard = {
period: 'January 2025',
totalSavings: 12450,
savingsByCategory: {
compute: 6200,
storage: 1800,
database: 3500,
network: 750,
other: 200,
},
topOptimizations: [
{
description: 'Right-sized 32 EC2 instances',
savings: 4100,
status: 'completed',
},
{
description: 'Purchased 5 RDS Reserved Instances',
savings: 3500,
status: 'completed',
},
{
description: 'Terminated 15 idle instances',
savings: 2100,
status: 'completed',
},
],
roi: 8.5, // Implementation time vs savings
};
```
## Workflow
1. **Review Recommendations**: Prioritize by savings + effort
2. **Safety Check**: Verify backups, monitoring, approvals
3. **Create Rollback Plan**: Document restore steps
4. **Implement Change**: Execute optimization (staged rollout)
5. **Monitor Impact**: Track metrics for 24-48 hours
6. **Validate Savings**: Compare actual vs projected costs
7. **Document Results**: Update cost tracking dashboard
## Example Usage
**User**: "Optimize our over-provisioned EC2 instances"
**Response**:
- Reviews 32 over-provisioned instances
- Creates safety checklist (backups, monitoring, approvals)
- Generates resize plan with rollback procedures
- Provides automated scripts for off-hours execution
- Sets up post-optimization monitoring
- Projects $4,100/month savings
## When to Use
- Implementing cost analysis recommendations
- Emergency budget cuts
- Scheduled optimization sprints
- New architecture deployment
- Post-incident cost spike mitigation
Optimize cloud costs safely with automated tooling!