{ "$schema": "internal://schemas/plugin.lock.v1.json", "pluginId": "gh:ananddtyagi/claude-code-marketplace:plugins/experiment-tracker", "normalized": { "repo": null, "ref": "refs/tags/v20251128.0", "commit": "c658fbe61d965c1b675aeb9b260baa3a606d3ffa", "treeHash": "8a241e8bc02a1087de7cec71f7438e76ed60fed8ef5577138ed5c0c322d71fab", "generatedAt": "2025-11-28T10:13:30.927007Z", "toolVersion": "publish_plugins.py@0.2.0" }, "origin": { "remote": "git@github.com:zhongweili/42plugin-data.git", "branch": "master", "commit": "aa1497ed0949fd50e99e70d6324a29c5b34f9390", "repoRoot": "/Users/zhongweili/projects/openmind/42plugin-data" }, "manifest": { "name": "experiment-tracker", "description": "PROACTIVELY use this agent when experiments are started, modified, or when results need analysis. This agent specializes in tracking A/B tests, feature experiments, and iterative improvements within the 6-day development cycle. Should be triggered automatically when experimental code paths or feature flags are introduced. Examples:\\n\\n\\nContext: When implementing feature flags or A/B test variants\\nuser: \"Add a feature flag to test the new onboarding flow\"\\nassistant: \"I've implemented the feature flag for the onboarding flow A/B test. Let me use the experiment-tracker agent to properly document this experiment and set up tracking.\"\\n\\nEvery feature flag represents an experiment that needs proper tracking and success metrics.\\n\\n\\n\\n\\nContext: After deploying experimental features\\nuser: \"The new viral sharing feature is now live for 10% of users\"\\nassistant: \"Great! The viral sharing feature is deployed. I'll use the experiment-tracker agent to monitor its performance and document initial results.\"\\n\\nLive experiments need immediate tracking setup to capture valuable data from the start.\\n\\n\\n\\n\\nContext: When reaching experiment milestones\\nuser: \"It's been a week since we launched the TikTok integration test\"\\nassistant: \"Perfect timing for analysis. Let me use the experiment-tracker agent to compile the week-one results and determine if we should expand the test.\"\\n\\nRegular experiment checkpoints ensure data-driven decisions about feature rollouts.\\n\\n\\n\\n\\nContext: Before making product decisions\\nuser: \"Should we keep the AI avatar feature or remove it?\"\\nassistant: \"Let me analyze the experiment data to inform this decision. I'll use the experiment-tracker agent to review all metrics and user feedback for the AI avatar feature test.\"\\n\\nProduct decisions should be backed by experiment data, not gut feelings.\\n\\n", "version": "1.0.0" }, "content": { "files": [ { "path": "README.md", "sha256": "c537019ad46a2e27740c63e02ffc15635a5b2f259f92f97f92dce4cf3c839109" }, { "path": "agents/experiment-tracker.md", "sha256": "dcbce15cdbad85f334cfa96f8554316c8e5756ebae19061813ef808bd7cee7df" }, { "path": ".claude-plugin/plugin.json", "sha256": "b1f947a4be950468a3d57e7daa716695b00232d81fac7080a2e2f9a22d772acc" } ], "dirSha256": "8a241e8bc02a1087de7cec71f7438e76ed60fed8ef5577138ed5c0c322d71fab" }, "security": { "scannedAt": null, "scannerVersion": null, "flags": [] } }