--- description: Detailed help for Warpio local AI management allowed-tools: Read --- # Warpio Local AI Help ## Local AI Overview Warpio uses local AI providers for quick, cost-effective, and low-latency tasks while reserving Claude (the main AI) for complex reasoning and planning. ## Supported Providers ### 🤖 LM Studio (Recommended) **Best for:** Most users with GPU-enabled systems **Setup:** 1. Download from https://lmstudio.ai 2. Install models (qwen3-4b-instruct-2507 recommended) 3. Start local server on port 1234 4. Configure in Warpio with `/warpio-local-config` **Configuration:** ```bash LOCAL_AI_PROVIDER=lmstudio LMSTUDIO_API_URL=http://192.168.86.20:1234/v1 LMSTUDIO_MODEL=qwen3-4b-instruct-2507 LMSTUDIO_API_KEY=lm-studio ``` ### 🦙 Ollama **Best for:** CPU-only systems or alternative models **Setup:** 1. Install Ollama from https://ollama.ai 2. Pull models: `ollama pull llama3.2` 3. Start service: `ollama serve` 4. Configure in Warpio **Configuration:** ```bash LOCAL_AI_PROVIDER=ollama OLLAMA_API_URL=http://localhost:11434/v1 OLLAMA_MODEL=llama3.2 ``` ## Local AI Commands ### Check Status ```bash /warpio-local-status ``` Shows connection status, response times, and capabilities. ### Configure Provider ```bash /warpio-local-config ``` Interactive setup for LM Studio, Ollama, or custom providers. ### Test Connection ```bash /warpio-local-test ``` Tests connectivity, authentication, and basic functionality. ## When to Use Local AI ### ✅ Ideal for Local AI - **Quick Analysis:** Statistical summaries, data validation - **Format Conversion:** HDF5→Parquet, data restructuring - **Documentation:** Code documentation, README generation - **Simple Queries:** Lookups, basic explanations - **Real-time Tasks:** Interactive analysis, quick iterations ### ✅ Best for Claude (Main AI) - **Complex Reasoning:** Multi-step problem solving - **Creative Tasks:** Brainstorming, design decisions - **Deep Analysis:** Comprehensive research and planning - **Large Tasks:** Code generation, architectural decisions - **Context-Heavy:** Tasks requiring extensive conversation history ## Performance Optimization ### Speed Benefits - **Local Processing:** No network latency - **Direct Access:** Immediate response to local resources - **Optimized Hardware:** Uses your local GPU/CPU efficiently ### Cost Benefits - **No API Costs:** Free for local model inference - **Scalable:** Run multiple models simultaneously - **Privacy:** Data stays on your machine ## Configuration Examples ### Basic LM Studio Setup ```bash # .env file LOCAL_AI_PROVIDER=lmstudio LMSTUDIO_API_URL=http://localhost:1234/v1 LMSTUDIO_MODEL=qwen3-4b-instruct-2507 LMSTUDIO_API_KEY=lm-studio ``` ### Advanced LM Studio Setup ```bash # .env file LOCAL_AI_PROVIDER=lmstudio LMSTUDIO_API_URL=http://192.168.1.100:1234/v1 LMSTUDIO_MODEL=qwen3-8b-instruct LMSTUDIO_API_KEY=your-custom-key ``` ### Ollama Setup ```bash # .env file LOCAL_AI_PROVIDER=ollama OLLAMA_API_URL=http://localhost:11434/v1 OLLAMA_MODEL=llama3.2:8b ``` ## Troubleshooting ### Connection Issues **Problem:** "Connection failed" - Check if LM Studio/Ollama is running - Verify API URL is correct - Check firewall settings - Try different port **Problem:** "Authentication failed" - Verify API key matches server configuration - Check API key format - Ensure proper permissions ### Performance Issues **Problem:** "Slow response times" - Check system resources (CPU/GPU usage) - Verify model is loaded in memory - Consider using a smaller/faster model - Close other resource-intensive applications ### Model Issues **Problem:** "Model not found" - Check model name spelling - Verify model is installed and available - Try listing available models - Reinstall model if corrupted ## Integration with Experts Local AI is automatically used by experts for appropriate tasks: - **Data Expert:** Quick format validation, metadata extraction - **Analysis Expert:** Statistical summaries, basic plotting - **Research Expert:** Literature search, citation formatting - **Workflow Expert:** Pipeline validation, simple automation ## Best Practices 1. **Start Simple:** Use default configurations initially 2. **Test Thoroughly:** Use `/warpio-local-test` after changes 3. **Monitor Performance:** Check `/warpio-local-status` regularly 4. **Choose Right Model:** Balance speed vs. capability 5. **Keep Updated:** Update models periodically for best performance ## Advanced Configuration ### Custom API Endpoints ```bash # For custom OpenAI-compatible APIs LOCAL_AI_PROVIDER=custom CUSTOM_API_URL=https://your-api-endpoint/v1 CUSTOM_API_KEY=your-api-key CUSTOM_MODEL=your-model-name ``` ### Multiple Models You can configure different models for different tasks by updating the `.env` file and restarting your local AI provider. ### Resource Management - Monitor GPU/CPU usage during intensive tasks - Adjust model parameters for your hardware - Use model quantization for better performance on limited hardware