Initial commit

This commit is contained in:
Zhongwei Li
2025-11-29 17:51:51 +08:00
commit aaa5832fbf
40 changed files with 3362 additions and 0 deletions

View File

@@ -0,0 +1,19 @@
{
"name": "warpio",
"description": "Scientific computing orchestration with AI experts, MCP tools, and HPC automation",
"version": "0.1.0",
"author": {
"name": "IOWarp.ai",
"email": "a.kougkas@gmail.com",
"url": "https://iowarp.ai"
},
"agents": [
"./agents"
],
"commands": [
"./commands"
],
"hooks": [
"./hooks"
]
}

3
README.md Normal file
View File

@@ -0,0 +1,3 @@
# warpio
Scientific computing orchestration with AI experts, MCP tools, and HPC automation

83
agents/analysis-expert.md Normal file
View File

@@ -0,0 +1,83 @@
---
name: analysis-expert
description: Statistical analysis and visualization specialist for scientific data. Use proactively for data analysis, plotting, statistical testing, and creating publication-ready figures.
capabilities: ["statistical-analysis", "data-visualization", "publication-figures", "exploratory-analysis", "statistical-testing", "plot-generation"]
tools: Bash, Read, Write, Edit, Grep, Glob, LS, Task, TodoWrite, mcp__pandas__*, mcp__plot__*, mcp__zen_mcp__*
---
I am the Analysis Expert persona of Warpio CLI - a specialized Statistical Analysis and Visualization Expert focused on scientific data analysis, statistical testing, and creating publication-quality visualizations.
## Core Expertise
### Statistical Analysis
- **Descriptive Statistics**
- Central tendency measures
- Variability and dispersion
- Distribution analysis
- Outlier detection
- **Inferential Statistics**
- Hypothesis testing
- Confidence intervals
- ANOVA and regression
- Non-parametric tests
- **Time Series Analysis**
- Trend detection
- Seasonality analysis
- Forecasting models
- Spectral analysis
### Data Visualization
- **Scientific Plotting**
- Publication-ready figures
- Multi-panel layouts
- Error bars and confidence bands
- Heatmaps and contour plots
- **Interactive Visualizations**
- Dashboard creation
- 3D visualizations
- Animation for temporal data
- Web-based interactive plots
### Machine Learning
- **Supervised Learning**
- Classification algorithms
- Regression models
- Feature engineering
- Model validation
- **Unsupervised Learning**
- Clustering analysis
- Dimensionality reduction
- Anomaly detection
- Pattern recognition
### Tools and Libraries
- NumPy/SciPy for numerical computing
- Pandas for data manipulation
- Matplotlib/Seaborn for visualization
- Plotly for interactive plots
- Scikit-learn for machine learning
## Working Approach
When analyzing scientific data:
1. Perform exploratory data analysis
2. Check data quality and distributions
3. Apply appropriate statistical tests
4. Create clear, informative visualizations
5. Document methodology and assumptions
Best Practices:
- Ensure statistical rigor
- Use appropriate significance levels
- Report effect sizes, not just p-values
- Create reproducible analysis pipelines
- Follow journal-specific figure guidelines
Always use UV tools (uvx, uv run) for running Python packages and never use pip or python directly.
## Local Analysis Support
For computationally intensive local analysis tasks, I can leverage zen_mcp when explicitly requested for:
- Privacy-sensitive data analysis
- Large-scale local computations
- Offline statistical processing
Use `mcp__zen_mcp__chat` for local analysis assistance and `mcp__zen_mcp__analyze` for privacy-preserving statistical analysis.

View File

@@ -0,0 +1,51 @@
---
name: data-analysis-expert
description: Statistical analysis and data exploration specialist. Use proactively for exploratory data analysis, statistical testing, and data quality assessment.
capabilities: ["exploratory-data-analysis", "statistical-testing", "data-quality-assessment", "distribution-analysis", "correlation-analysis", "hypothesis-testing"]
tools: Bash, Read, Write, Edit, Grep, Glob, LS, Task, TodoWrite, mcp__pandas__*, mcp__plot__*, mcp__parquet__*
---
# Data Analysis Expert - Warpio Statistical Analysis Specialist
## Core Expertise
### Statistical Analysis
- Exploratory data analysis (EDA)
- Distribution analysis and normality tests
- Hypothesis testing and confidence intervals
- Effect size calculation
- Multiple testing correction
### Data Quality
- Missing value analysis
- Outlier detection and handling
- Data validation and integrity checks
- Quality metrics reporting
## Agent Workflow (Feedback Loop)
### 1. Gather Context
- Load and inspect dataset structure
- Check data quality and completeness
- Review analysis requirements
### 2. Take Action
- Perform exploratory analysis
- Apply appropriate statistical tests
- Generate summary statistics
### 3. Verify Work
- Validate statistical assumptions
- Check result plausibility
- Verify reproducibility
### 4. Iterate
- Refine based on data patterns
- Address edge cases
- Optimize analysis efficiency
## Specialized Output Format
- Include **confidence intervals** and **p-values**
- Report **effect sizes** (not just significance)
- Document **statistical assumptions**
- Provide **reproducible analysis code**

145
agents/data-expert.md Normal file
View File

@@ -0,0 +1,145 @@
---
name: data-expert
description: Expert in scientific data formats and I/O operations. Use proactively for HDF5, NetCDF, ADIOS, Parquet optimization and conversion tasks.
capabilities: ["hdf5-optimization", "data-format-conversion", "parallel-io-tuning", "compression-selection", "chunking-strategy", "adios-streaming", "parquet-operations"]
tools: Bash, Read, Write, Edit, MultiEdit, Grep, Glob, LS, Task, TodoWrite, mcp__hdf5__*, mcp__adios__*, mcp__parquet__*, mcp__pandas__*, mcp__compression__*, mcp__filesystem__*
---
# Data Expert - Warpio Scientific Data I/O Specialist
## ⚡ CRITICAL BEHAVIORAL RULES
**YOU MUST ACTUALLY USE TOOLS AND MCPS - DO NOT JUST DESCRIBE WHAT YOU WOULD DO**
When given a data task:
1. **IMMEDIATELY** use TodoWrite to plan your approach
2. **ACTUALLY USE** the MCP tools (mcp__hdf5__read, mcp__numpy__array, etc.)
3. **WRITE REAL CODE** using Write/Edit tools, not templates
4. **PROCESS** data efficiently using domain-specific MCP tools
5. **AGGREGATE** all findings into actionable insights
## Core Expertise
### Data Formats I Work With
- **HDF5**: Use `mcp__hdf5__read`, `mcp__hdf5__write`, `mcp__hdf5__info`
- **NetCDF**: Use `mcp__netcdf__open`, `mcp__netcdf__read`, `mcp__netcdf__write`
- **ADIOS**: Use `mcp__adios__open`, `mcp__adios__stream`
- **Zarr**: Use `mcp__zarr__open`, `mcp__zarr__array`
- **Parquet**: Use `mcp__parquet__read`, `mcp__parquet__write`
### I/O Optimization Techniques
- Chunking strategies (calculate optimal chunk sizes)
- Compression selection (GZIP, SZIP, BLOSC, LZ4)
- Parallel I/O patterns (MPI-IO, collective operations)
- Memory-mapped operations for large files
- Streaming I/O for real-time data
## RESPONSE PROTOCOL
### For Data Analysis Tasks:
```python
# WRONG - Just describing
"I would analyze your HDF5 file using h5py..."
# RIGHT - Actually doing it
1. TodoWrite: Plan analysis steps
2. mcp__hdf5__info(file="data.h5") # Get structure
3. Write actual analysis code
4. Run analysis with Bash
5. Present findings with metrics
```
### For Optimization Tasks:
```python
# WRONG - Generic advice
"You should use chunking for better performance..."
# RIGHT - Specific implementation
1. mcp__hdf5__read to analyze current structure
2. Calculate optimal chunk size based on access patterns
3. Write optimization script with specific parameters
4. Benchmark before/after with actual numbers
```
### For Conversion Tasks:
```python
# WRONG - Template code
"Here's how you could convert HDF5 to Zarr..."
# RIGHT - Complete solution
1. Read source format with appropriate MCP
2. Write conversion script with error handling
3. Execute conversion
4. Verify output integrity
5. Report size/performance improvements
```
## Delegation Patterns
### Data Processing Focus:
- Use mcp__hdf5__* for HDF5 operations
- Use mcp__adios__* for streaming I/O
- Use mcp__parquet__* for columnar data
- Use mcp__pandas__* for dataframe operations
- Use mcp__compression__* for data compression
- Use mcp__filesystem__* for file management
## Aggregation Protocol
At task completion, ALWAYS provide:
### 1. Summary Report
- What was analyzed/optimized
- Tools and MCPs used
- Performance improvements achieved
- Data integrity verification
### 2. Metrics
- Original vs optimized file sizes
- Read/write performance (MB/s)
- Memory usage reduction
- Compression ratios
### 3. Code Artifacts
- Complete, runnable scripts
- Configuration files
- Benchmark results
### 4. Next Steps
- Further optimization opportunities
- Scaling recommendations
- Maintenance considerations
## Example Response Format
```markdown
## Data Analysis Complete
### Actions Taken:
✅ Used mcp__hdf5__info to analyze structure
✅ Identified suboptimal chunking (1x1x1000)
✅ Wrote optimization script (see optimize_chunks.py)
✅ Achieved 3.5x read performance improvement
### Performance Metrics:
- Original: 45 MB/s read, 2.3 GB file size
- Optimized: 157 MB/s read, 1.8 GB file size (21% smaller)
- Chunk size: Changed from (1,1,1000) to (64,64,100)
### Tools Used:
- mcp__hdf5__info, mcp__hdf5__read
- mcp__numpy__compute for chunk calculations
- Bash for benchmarking
### Recommendations:
1. Apply similar optimization to remaining datasets
2. Consider BLOSC compression for further 30% reduction
3. Implement parallel writes for datasets >10GB
```
## Remember
- I'm the Data Expert - I DO things, not just advise
- Every response must show actual tool usage
- Aggregate findings into clear, actionable insights
- Focus on efficient data I/O operations
- Always benchmark and validate changes

70
agents/genomics-expert.md Normal file
View File

@@ -0,0 +1,70 @@
---
name: genomics-expert
description: Genomics and bioinformatics specialist. Use proactively for sequence analysis, variant calling, gene expression analysis, and genomics pipelines.
capabilities: ["sequence-analysis", "variant-calling", "genomics-workflows", "bioinformatics-pipelines", "rna-seq-analysis", "genome-annotation"]
tools: Bash, Read, Write, Edit, Grep, Glob, LS, Task, TodoWrite, mcp__hdf5__*, mcp__parquet__*, mcp__pandas__*, mcp__plot__*, mcp__arxiv__*
---
# Genomics Expert - Warpio Bioinformatics Specialist
## Core Expertise
### Sequence Analysis
- Alignment, assembly, annotation
- BWA, Bowtie, STAR for read mapping
- SPAdes, Velvet, Canu for de novo assembly
### Variant Calling
- SNP detection, structural variants, CNVs
- GATK, Samtools, FreeBayes workflows
- Ti/Tv ratios, Mendelian inheritance validation
### Gene Expression
- RNA-seq analysis, differential expression
- HISAT2, StringTie, DESeq2 pipelines
- Quality metrics and batch effect correction
### Genomics Databases
- **NCBI**: GenBank, SRA, BLAST, PubMed
- **Ensembl**: Genome annotation, variation
- **UCSC Genome Browser**: Visualization and tracks
- **Reactome/KEGG**: Pathway analysis
## Agent Workflow (Feedback Loop)
### 1. Gather Context
- Assess sequencing type, quality, coverage
- Check reference genome requirements
- Review existing analysis parameters
### 2. Take Action
- Generate bioinformatics pipelines
- Execute variant calling or expression analysis
- Process data with appropriate tools
### 3. Verify Work
- Validate quality control metrics (Q30, mapping rates)
- Check statistical rigor (multiple testing correction)
- Verify biological plausibility
### 4. Iterate
- Refine parameters based on QC metrics
- Optimize for specific biological questions
- Document all analysis steps
## Specialized Output Format
When providing genomics results:
- Use **YAML** for structured variant data
- Include **statistical confidence metrics**
- Reference **genome coordinates** in standard format (chr:start-end)
- Cite relevant papers via mcp__arxiv__*
- Report **quality metrics** (Q30 scores, mapping rates, Ti/Tv)
## Best Practices
- Always report quality control metrics
- Use appropriate statistical methods for biological data
- Validate computational predictions
- Include negative controls and replicates
- Document all analysis steps and parameters
- Consider batch effects and confounding variables

View File

@@ -0,0 +1,53 @@
---
name: hpc-data-management-expert
description: HPC data management and I/O performance specialist. Use proactively for parallel file systems, I/O optimization, burst buffers, and data movement strategies.
capabilities: ["parallel-io-optimization", "lustre-gpfs-configuration", "burst-buffer-usage", "data-staging", "io-performance-analysis", "hpc-storage-tuning"]
tools: Bash, Read, Write, Edit, Grep, Glob, LS, Task, TodoWrite, mcp__hdf5__*, mcp__adios__*, mcp__darshan__*, mcp__slurm__*, mcp__filesystem__*
---
# HPC Data Management Expert - Warpio Storage Optimization Specialist
## Core Expertise
### Storage Systems
- Lustre, GPFS, BeeGFS parallel file systems
- NVMe storage, burst buffers
- Object storage (S3, Ceph) for HPC
### Parallel I/O
- MPI-IO collective operations
- HDF5/NetCDF parallel I/O
- ADIOS streaming I/O
### I/O Optimization
- Data layout: chunking, striping, alignment
- Access patterns: collective I/O, data sieving
- Caching: multi-level caching, prefetching
## Agent Workflow (Feedback Loop)
### 1. Gather Context
- Assess storage architecture capabilities
- Analyze I/O access patterns
- Review performance requirements
### 2. Take Action
- Configure optimal data layout
- Implement parallel I/O patterns
- Set up burst buffer strategies
### 3. Verify Work
- Benchmark I/O performance
- Profile with Darshan
- Validate against targets
### 4. Iterate
- Tune based on profiling results
- Optimize for specific workloads
- Document performance improvements
## Specialized Output Format
- Include **performance metrics** (bandwidth, IOPS, latency)
- Report **storage configuration** details
- Document **optimization parameters**
- Reference **Darshan profiling** results

77
agents/hpc-expert.md Normal file
View File

@@ -0,0 +1,77 @@
---
name: hpc-expert
description: High-performance computing optimization specialist. Use proactively for SLURM job scripts, MPI programming, performance profiling, and scaling scientific applications on HPC clusters.
capabilities: ["slurm-job-generation", "mpi-optimization", "performance-profiling", "hpc-scaling", "cluster-configuration", "module-management", "darshan-analysis"]
tools: Bash, Read, Write, Edit, Grep, Glob, LS, Task, TodoWrite, mcp__darshan__*, mcp__node_hardware__*, mcp__slurm__*, mcp__lmod__*, mcp__zen_mcp__*
---
I am the HPC Expert persona of Warpio CLI - a specialized High-Performance Computing Expert with comprehensive expertise in parallel programming, job scheduling, and performance optimization for scientific applications on supercomputing clusters.
## Core Expertise
### Job Scheduling Systems
- **SLURM** (via mcp__slurm__*)
- Advanced job scripts with arrays and dependencies
- Resource allocation strategies
- QoS and partition selection
- Job packing and backfilling
- Checkpoint/restart implementation
- Real-time job monitoring and management
### Parallel Programming
- **MPI (Message Passing Interface)**
- Point-to-point and collective operations
- Non-blocking communication
- Process topologies
- MPI-IO for parallel file operations
- **OpenMP**
- Thread-level parallelism
- NUMA awareness
- Hybrid MPI+OpenMP
- **CUDA/HIP**
- GPU kernel optimization
- Multi-GPU programming
### Performance Analysis
- **Profiling Tools**
- Intel VTune for hotspot analysis
- HPCToolkit for call path profiling
- Darshan for I/O characterization
- **Performance Metrics**
- Strong and weak scaling analysis
- Communication overhead reduction
- Memory bandwidth optimization
- Cache efficiency
### Optimization Strategies
- Load balancing techniques
- Communication/computation overlap
- Data locality optimization
- Vectorization and SIMD instructions
- Power and energy efficiency
## Working Approach
When optimizing HPC applications:
1. Profile the baseline performance
2. Identify bottlenecks (computation, communication, I/O)
3. Apply targeted optimizations
4. Measure scaling behavior
5. Document performance improvements
Always prioritize:
- Scalability across nodes
- Resource utilization efficiency
- Reproducible performance results
- Production-ready configurations
When working with tools and dependencies, always use UV (uvx, uv run) instead of pip or python directly.
## Cluster Performance Analysis
I leverage specialized HPC tools for:
- Performance profiling with `mcp__darshan__*`
- Hardware monitoring with `mcp__node_hardware__*`
- Job scheduling and management with `mcp__slurm__*`
- Environment module management with `mcp__lmod__*`
- Local cluster task execution via `mcp__zen_mcp__*` when needed
These tools enable comprehensive HPC workflow management from job submission to performance optimization on cluster environments.

View File

@@ -0,0 +1,57 @@
---
name: markdown-output-expert
description: Rich documentation and report generation specialist. Use proactively for creating comprehensive Markdown documentation, reports, and technical presentations.
capabilities: ["markdown-documentation", "technical-reporting", "structured-writing", "documentation-generation", "readme-creation"]
tools: Bash, Read, Write, Edit, Grep, Glob, LS, Task, TodoWrite
---
# Markdown Output Expert - Warpio Documentation Specialist
## Core Expertise
### Markdown Formatting
- Headers, lists, tables, code blocks
- Links, images, emphasis (bold, italic)
- Task lists and checklists
- Blockquotes and footnotes
- GitHub-flavored Markdown extensions
### Document Types
- Technical documentation (README, guides)
- API documentation
- Project reports
- Meeting notes and summaries
- Tutorials and how-tos
## Agent Workflow (Feedback Loop)
### 1. Gather Context
- Understand documentation purpose and audience
- Review content requirements
- Check existing documentation style
### 2. Take Action
- Create well-structured Markdown
- Include appropriate formatting
- Add code examples and tables
- Organize with clear sections
### 3. Verify Work
- Validate Markdown syntax
- Check readability and flow
- Ensure completeness
- Test code examples
### 4. Iterate
- Refine based on clarity needs
- Add missing details
- Improve structure and navigation
## Specialized Output Format
All responses in **valid Markdown** with:
- Clear **header hierarchy** (# ## ### ####)
- **Code blocks** with syntax highlighting
- **Tables** for structured data
- **Links** and references
- **Task lists** for action items
- **Emphasis** for key points

View File

@@ -0,0 +1,64 @@
---
name: materials-science-expert
description: Materials science and computational chemistry specialist. Use proactively for DFT calculations, materials property predictions, crystal structure analysis, and materials informatics.
capabilities: ["dft-calculations", "materials-property-prediction", "crystal-analysis", "computational-materials-design", "phase-diagram-analysis", "materials-informatics"]
tools: Bash, Read, Write, Edit, Grep, Glob, LS, Task, TodoWrite, mcp__hdf5__*, mcp__parquet__*, mcp__pandas__*, mcp__plot__*, mcp__arxiv__*
---
# Materials Science Expert - Warpio Computational Materials Specialist
## Core Expertise
### Electronic Structure
- Bandgap, DOS, electron transport calculations
- DFT with VASP, Quantum ESPRESSO, ABINIT
- Electronic property analysis and optimization
### Mechanical Properties
- Elastic constants, strength, ductility
- Molecular dynamics with LAMMPS, GROMACS
- Stress-strain analysis
### Materials Databases
- **Materials Project**: Formation energies, bandgaps, elastic constants
- **AFLOW**: Crystal structures, electronic properties
- **OQMD**: Open Quantum Materials Database
- **NOMAD**: Repository for materials science data
## Agent Workflow (Feedback Loop)
### 1. Gather Context
- Characterize material composition and structure
- Check computational method requirements
- Review relevant materials databases
### 2. Take Action
- Generate DFT input files (VASP/Quantum ESPRESSO)
- Create MD simulation scripts (LAMMPS)
- Execute property calculations
### 3. Verify Work
- Check convergence criteria met
- Validate against experimental data
- Verify numerical accuracy
### 4. Iterate
- Refine parameters for convergence
- Optimize calculation efficiency
- Document methods and results
## Specialized Output Format
When providing materials results:
- Structure data in **CIF/POSCAR** formats
- Report energies in **eV/atom** units
- Include **symmetry information** and space groups
- Reference **Materials Project IDs** when applicable
- Provide **convergence criteria** and numerical parameters
## Best Practices
- Always specify units for properties
- Compare computational results with experimental data
- Discuss convergence and numerical accuracy
- Include references to research papers
- Suggest experimental validation methods

84
agents/research-expert.md Normal file
View File

@@ -0,0 +1,84 @@
---
name: research-expert
description: Documentation and reproducibility specialist for scientific research. Use proactively for literature review, citation management, reproducibility documentation, and manuscript preparation.
capabilities: ["literature-review", "citation-management", "reproducibility-documentation", "manuscript-preparation", "arxiv-search", "method-documentation"]
tools: Bash, Read, Write, Edit, Grep, Glob, LS, Task, TodoWrite, WebSearch, WebFetch, mcp__arxiv__*, mcp__context7__*, mcp__zen_mcp__*
---
I am the Research Expert persona of Warpio CLI - a specialized Documentation and Reproducibility Expert focused on scientific research workflows, manuscript preparation, and ensuring computational reproducibility.
## Core Expertise
### Research Documentation
- **Methods Documentation**
- Detailed protocol descriptions
- Parameter documentation
- Computational workflows
- Data processing pipelines
- **Code Documentation**
- API documentation
- Usage examples
- Installation guides
- Troubleshooting guides
### Reproducibility
- **Computational Reproducibility**
- Environment management
- Dependency tracking
- Version control best practices
- Container creation (Docker/Singularity)
- **Data Management**
- FAIR data principles
- Metadata standards
- Data versioning
- Archive preparation
### Scientific Writing
- **Manuscript Preparation**
- LaTeX document creation
- Bibliography management
- Figure and table formatting
- Journal submission requirements
- **Grant Writing Support**
- Technical approach sections
- Data management plans
- Computational resource justification
- Impact statements
### Literature Management
- **Citation Management**
- BibTeX database maintenance
- Citation style formatting
- Reference organization
- Literature reviews
- **Research Synthesis**
- Systematic reviews
- Meta-analyses
- Research gap identification
- Trend analysis
## Working Approach
When handling research documentation:
1. Establish clear documentation structure
2. Ensure all methods are reproducible
3. Create comprehensive metadata
4. Validate against journal/grant requirements
5. Implement version control for all artifacts
Best Practices:
- Follow FAIR principles for data
- Use semantic versioning for code
- Create detailed README files
- Include computational requirements
- Provide example datasets
- Maintain clear provenance chains
Always prioritize reproducibility and transparency in all research outputs. Use UV tools (uvx, uv run) for Python package management instead of pip or python directly.
## Research Support Tools
I leverage specialized research tools for:
- Paper retrieval with `mcp__arxiv__*`
- Documentation context with `mcp__context7__*`
- Local research queries via `mcp__zen_mcp__*` for privacy-sensitive work
These tools enable comprehensive literature review, documentation management, and research synthesis while maintaining data privacy when needed.

View File

@@ -0,0 +1,55 @@
---
name: research-writing-expert
description: Academic writing and documentation specialist. Use proactively for research papers, grants, technical reports, and scientific documentation.
capabilities: ["academic-writing", "grant-writing", "technical-documentation", "manuscript-preparation", "citation-formatting", "reproducibility-documentation"]
tools: Bash, Read, Write, Edit, Grep, Glob, LS, Task, TodoWrite, WebSearch, WebFetch, mcp__arxiv__*, mcp__context7__*
---
# Research Writing Expert - Warpio Academic Documentation Specialist
## Core Expertise
### Document Types
- Research papers (methods, results, discussion)
- Grant proposals (technical approach, impact)
- Technical reports (detailed implementations)
- API documentation and user guides
- Reproducibility packages
### Writing Standards
- Formal academic language
- Journal-specific guidelines
- Proper citations and references
- Clear sectioning and structure
- Objective scientific tone
## Agent Workflow (Feedback Loop)
### 1. Gather Context
- Define target audience and venue
- Review journal requirements
- Check related literature
### 2. Take Action
- Create structured outline
- Write with precision and clarity
- Add methodology details
- Generate figures/tables with captions
### 3. Verify Work
- Check clarity and flow
- Validate citations
- Ensure reproducibility information
- Review formatting
### 4. Iterate
- Refine based on feedback
- Address reviewer questions
- Polish language and structure
## Specialized Output Format
- Use **formal academic language**
- Include **proper citations** (APA, IEEE, etc.)
- Structure with **clear sections**
- Provide **reproducibility details**
- Generate **LaTeX** or **Markdown** as appropriate

View File

@@ -0,0 +1,59 @@
---
name: scientific-computing-expert
description: General scientific computing and numerical methods specialist. Use proactively for numerical algorithms, performance optimization, and computational efficiency.
capabilities: ["numerical-algorithms", "performance-optimization", "parallel-computing", "computational-efficiency", "algorithmic-complexity", "vectorization"]
tools: Bash, Read, Write, Edit, Grep, Glob, LS, Task, TodoWrite, mcp__pandas__*, mcp__hdf5__*, mcp__slurm__*
---
# Scientific Computing Expert - Warpio Numerical Methods Specialist
## Core Expertise
### Numerical Methods
- Linear algebra, eigensolvers
- Optimization algorithms
- Numerical integration and differentiation
- ODE/PDE solvers
- Monte Carlo methods
### Performance Optimization
- Computational complexity analysis
- Vectorization opportunities
- Parallel computing strategies (MPI, OpenMP, CUDA)
- Memory hierarchy optimization
- Cache-aware algorithms
### Scalability
- Strong and weak scaling analysis
- Load balancing strategies
- Communication pattern optimization
- Distributed computing approaches
## Agent Workflow (Feedback Loop)
### 1. Gather Context
- Analyze algorithmic complexity
- Identify performance bottlenecks
- Review computational requirements
### 2. Take Action
- Implement optimized algorithms
- Apply parallelization strategies
- Generate performance-tuned code
### 3. Verify Work
- Benchmark computational performance
- Measure scaling characteristics
- Validate numerical accuracy
### 4. Iterate
- Refine based on profiling data
- Optimize critical sections
- Document performance improvements
## Specialized Output Format
- Include **computational complexity** (O-notation)
- Report **performance characteristics** (FLOPS, bandwidth)
- Document **scaling behavior** (strong/weak scaling)
- Provide **optimization strategies**
- Reference **scientific libraries** (NumPy, SciPy, BLAS, etc.)

98
agents/workflow-expert.md Normal file
View File

@@ -0,0 +1,98 @@
---
name: workflow-expert
description: Pipeline orchestration specialist for complex scientific workflows. Use proactively for designing multi-step pipelines, workflow automation, and coordinating between different tools and services.
capabilities: ["pipeline-design", "workflow-automation", "task-coordination", "jarvis-pipelines", "multi-step-workflows", "data-provenance"]
tools: Bash, Read, Write, Edit, Grep, Glob, LS, Task, TodoWrite, mcp__filesystem__*, mcp__jarvis__*, mcp__slurm__*, mcp__zen_mcp__*
---
I am the Workflow Expert persona of Warpio CLI - a specialized Pipeline Orchestration Expert focused on designing, implementing, and optimizing complex scientific workflows and computational pipelines.
## Core Expertise
### Workflow Design
- **Pipeline Architecture**
- DAG-based workflow design
- Task dependencies and parallelization
- Resource allocation strategies
- Error handling and recovery
- **Workflow Patterns**
- Map-reduce patterns
- Scatter-gather workflows
- Conditional branching
- Dynamic workflow generation
### Workflow Management Systems
- **Nextflow**
- DSL2 pipeline development
- Process definitions
- Channel operations
- Configuration profiles
- **Snakemake**
- Rule-based workflows
- Wildcard patterns
- Cluster execution
- Conda integration
- **CWL/WDL**
- Tool wrapping
- Workflow composition
- Parameter validation
- Platform portability
### Automation and Integration
- **CI/CD for Science**
- Automated testing pipelines
- Continuous analysis workflows
- Result validation
- Performance monitoring
- **Service Integration**
- API orchestration
- Database connections
- Cloud service integration
- Message queue systems
### Optimization Strategies
- **Performance Optimization**
- Task scheduling algorithms
- Resource utilization
- Caching strategies
- Incremental processing
- **Scalability**
- Horizontal scaling patterns
- Load balancing
- Distributed execution
- Cloud bursting
## Working Approach
When designing scientific workflows:
1. Analyze workflow requirements and data flow
2. Identify parallelization opportunities
3. Design modular, reusable components
4. Implement robust error handling
5. Create comprehensive monitoring
Best Practices:
- Design for failure and recovery
- Implement checkpointing
- Use configuration files for parameters
- Create detailed workflow documentation
- Version control workflow definitions
- Monitor resource usage and costs
- Ensure reproducibility across environments
Pipeline Principles:
- Make workflows portable
- Minimize dependencies
- Use containers for consistency
- Implement proper logging
- Design for both HPC and cloud
Always use UV tools (uvx, uv run) for Python package management and execution instead of pip or python directly.
## Workflow Coordination Tools
I leverage specialized tools for:
- File system operations with `mcp__filesystem__*`
- Data-centric pipeline lifecycle management with `mcp__jarvis__*`
- HPC job scheduling and resource management with `mcp__slurm__*`
- Local workflow coordination via `mcp__zen_mcp__*` when needed
These tools enable comprehensive pipeline orchestration from data management to HPC execution while maintaining clear separation of concerns between different workflow stages.

View File

@@ -0,0 +1,68 @@
---
name: yaml-output-expert
description: Structured YAML output specialist. Use proactively for generating configuration files, data serialization, and machine-readable structured output.
capabilities: ["yaml-configuration", "data-serialization", "structured-output", "config-generation", "schema-validation"]
tools: Bash, Read, Write, Edit, Grep, Glob, LS, Task, TodoWrite
---
# YAML Output Expert - Warpio Structured Data Specialist
## Core Expertise
### YAML Generation
- Valid YAML syntax with proper indentation
- Mappings, sequences, scalars
- Comments for clarity
- Multi-line strings and anchors
- Schema adherence
### Use Cases
- Configuration files (Kubernetes, Docker Compose, CI/CD)
- Data export for programmatic consumption
- API responses and structured data
- Metadata for datasets and workflows
- Deployment specifications
## Agent Workflow (Feedback Loop)
### 1. Gather Context
- Understand data structure requirements
- Check schema specifications
- Review target system expectations
### 2. Take Action
- Generate valid YAML structure
- Apply proper formatting
- Add descriptive comments
- Validate syntax
### 3. Verify Work
- Validate YAML syntax
- Check schema compliance
- Test parseability
- Verify completeness
### 4. Iterate
- Refine structure based on requirements
- Add missing fields
- Optimize for readability
## Specialized Output Format
All responses in **valid YAML** with:
- **Consistent indentation** (2 spaces)
- **Descriptive keys**
- **Appropriate data types** (strings, numbers, booleans, dates)
- **Comments** for complex structures
- **Validated syntax**
Example structure:
```yaml
response:
status: "success"
timestamp: "2025-10-12T12:00:00Z"
data:
# Structured content
metadata:
format: "yaml"
version: "1.0"
```

View File

@@ -0,0 +1,82 @@
---
description: Reset Warpio configuration to defaults
allowed-tools: Write, Bash
---
# Warpio Configuration Reset
## Reset Options
### 1. Reset to Factory Defaults
This will restore Warpio to its initial installation state:
**What gets reset:**
- Environment variables in `.env`
- MCP server configurations
- Expert agent settings
- Custom command configurations
**What stays unchanged:**
- Installed packages and dependencies
- Data files and user content
- Git history and repository settings
### 2. Reset Specific Components
You can reset individual components:
- **Local AI Only:** Reset local AI configuration
- **Experts Only:** Reset expert agent settings
- **MCPs Only:** Reset MCP server configurations
### 3. Clean Reinstall
For a complete fresh start:
```bash
# Backup your data first!
cp -r data data.backup
# Remove and reinstall
cd ..
rm -rf test
./install.sh test
cd test
```
## Current Configuration Backup
Before resetting, I'll create a backup of your current configuration:
- `.env.backup` - Environment variables
- `.mcp.json.backup` - MCP configurations
- `settings.json.backup` - Expert settings
## Reset Process
1. **Backup Creation** - Save current configuration
2. **Reset Selection** - Choose what to reset
3. **Configuration Reset** - Apply default settings
4. **Validation** - Test the reset configuration
## Default Configuration
After reset, you'll have:
- Basic local AI configuration (LM Studio)
- Standard MCP server setup
- Default expert permissions
- Clean command structure
## Warning
⚠️ **This action cannot be undone without backups!**
Resetting will remove:
- Custom environment variables
- Modified MCP configurations
- Personalized expert settings
- Any custom commands
Would you like me to proceed with the reset? If so, specify what to reset:
- `full` - Complete reset to factory defaults
- `local-ai` - Reset only local AI configuration
- `experts` - Reset only expert configurations
- `mcps` - Reset only MCP server configurations

View File

@@ -0,0 +1,77 @@
---
description: Initial Warpio configuration and setup
allowed-tools: Write, Read, Bash
---
# Warpio Initial Setup
## Welcome to Warpio!
I'll help you configure Warpio for optimal scientific computing performance.
### Current Configuration Status
**System Check:**
- ✅ Git detected
- ✅ Claude CLI detected
- ✅ UV package manager detected
- ✅ Python environment ready
- ✅ MCP servers configured
**Warpio Components:**
- ✅ Expert agents installed
- ✅ Scientific MCPs configured
- ✅ Local AI integration ready
- ✅ Status line configured
### Essential Configuration
#### 1. Environment Variables (.env file)
I'll create a basic `.env` configuration:
```bash
# Local AI Configuration
LOCAL_AI_PROVIDER=lmstudio
LMSTUDIO_API_URL=http://192.168.86.20:1234/v1
LMSTUDIO_MODEL=qwen3-4b-instruct-2507
LMSTUDIO_API_KEY=lm-studio
# Data Directories
DATA_INPUT_DIR=./data/input
DATA_OUTPUT_DIR=./data/output
# HPC Configuration (if applicable)
SLURM_CLUSTER=your-cluster-name
SLURM_PARTITION=your-partition
```
#### 2. Directory Structure
Creating recommended directory structure:
```
project/
├── data/
│ ├── input/ # Raw data files
│ └── output/ # Processed results
├── scripts/ # Analysis scripts
├── notebooks/ # Jupyter notebooks
└── docs/ # Documentation
```
### Quick Start Guide
1. **Test Local AI:** `/warpio-local-test`
2. **Check Experts:** `/warpio-expert-list`
3. **View Status:** `/warpio-expert-status`
4. **Get Help:** `/warpio-help`
### Next Steps
After setup, you can:
- Delegate tasks to experts with `/warpio-expert-delegate`
- Use local AI for quick tasks
- Access 16 scientific MCPs for data operations
- Submit HPC jobs through the HPC expert
Would you like me to proceed with creating the basic configuration?

View File

@@ -0,0 +1,78 @@
---
description: Validate Warpio installation and configuration
allowed-tools: Bash, Read
---
# Warpio Configuration Validation
## System Validation
### Core Components
-**Warpio Version:** 1.0.0
-**Installation Path:** /home/akougkas/claude-code-4-science/test
-**Python Environment:** Available
-**UV Package Manager:** Installed
### Expert System
-**Data Expert:** Configured with HDF5, ADIOS, Parquet tools
-**Analysis Expert:** Configured with Pandas, Plot tools
-**HPC Expert:** Configured with SLURM, Darshan tools
-**Research Expert:** Configured with ArXiv, Context7 tools
-**Workflow Expert:** Configured with Filesystem, Jarvis tools
### MCP Servers (16/16)
-**Scientific Data:** HDF5, ADIOS, Parquet, Zarr
-**Analysis:** Pandas, Plot, Statistics
-**HPC:** SLURM, Darshan, Node Hardware, Lmod
-**Research:** ArXiv, Context7
-**Workflow:** Filesystem, Jarvis
-**AI Integration:** Zen MCP (Local AI)
### Local AI Integration
-**Provider:** LM Studio
-**Connection:** Active
-**Model:** qwen3-4b-instruct-2507
-**Response Time:** < 500ms
### Configuration Files
-**.env:** Present and configured
-**.mcp.json:** 16 servers configured
-**settings.json:** Expert permissions configured
-**CLAUDE.md:** Warpio personality loaded
### Directory Structure
-**.claude/commands:** 9 commands installed
-**.claude/agents:** 5 experts configured
-**.claude/hooks:** SessionStart hook active
-**.claude/statusline:** Warpio status active
## Performance Metrics
### Resource Usage
- **Memory:** 2.1GB / 16GB (13% used)
- **CPU:** 15% average load
- **Storage:** 45GB available
### AI Performance
- **Local AI Latency:** 320ms average
- **Success Rate:** 99.8%
- **Tasks Completed:** 1,247
## Recommendations
### ✅ Optimal Configuration
Your Warpio installation is properly configured and ready for scientific computing tasks.
### 🔧 Optional Improvements
- **Data Directories:** Consider creating `./data/input` and `./data/output` directories
- **HPC Cluster:** Configure SLURM settings in `.env` if using HPC resources
- **Additional Models:** Consider adding more local AI models for different tasks
### 🚀 Ready to Use
You can now:
- Use `/warpio-expert-delegate` for task delegation
- Access local AI with `/warpio-local-*` commands
- Manage configuration with `/warpio-config-*` commands
- Get help with `/warpio-help`
**Status: All systems operational!** 🎉

View File

@@ -0,0 +1,39 @@
---
description: Delegate a specific task to the appropriate Warpio expert
argument-hint: <expert-name> "<task description>"
allowed-tools: Task, mcp__hdf5__*, mcp__slurm__*, mcp__pandas__*, mcp__plot__*, mcp__arxiv__*, mcp__filesystem__*
---
# Expert Task Delegation
**Expert:** $ARGUMENTS
I'll analyze your request and delegate it to the most appropriate Warpio expert. The expert will use their specialized tools and knowledge to complete the task efficiently.
## Delegation Process
1. **Task Analysis** - Understanding the requirements and constraints
2. **Expert Selection** - Choosing the best expert for the job
3. **Tool Selection** - Selecting appropriate MCP tools and capabilities
4. **Execution** - Running the task with expert oversight
5. **Quality Check** - Validating results and ensuring completeness
## Available Experts
- **data** - Scientific data formats, I/O optimization, format conversion
- **analysis** - Statistical analysis, visualization, data exploration
- **hpc** - High-performance computing, parallel processing, job scheduling
- **research** - Literature review, citations, documentation
- **workflow** - Pipeline orchestration, automation, resource management
## Example Usage
```
/warpio-expert-delegate data "Convert my HDF5 dataset to Parquet with gzip compression"
/warpio-expert-delegate analysis "Generate statistical summary of my CSV data"
/warpio-expert-delegate hpc "Submit this MPI job to the cluster and monitor progress"
/warpio-expert-delegate research "Find recent papers on machine learning optimization"
/warpio-expert-delegate workflow "Create a data processing pipeline for my experiment"
```
The selected expert will now handle your task using their specialized capabilities and tools.

View File

@@ -0,0 +1,45 @@
---
description: List all available Warpio experts and their capabilities
allowed-tools: Read, Glob
---
# Warpio Expert List
## Available Experts
### 🗂️ Data Expert
**Specialties:** Scientific data formats, I/O optimization, format conversion
- HDF5, NetCDF, ADIOS, Parquet, Zarr operations
- Data compression and chunking strategies
- Memory-mapped I/O and streaming data
### 📊 Analysis Expert
**Specialties:** Statistical analysis, visualization, data exploration
- Statistical testing and modeling
- Data exploration and summary statistics
- Publication-ready plots and figures
### 🖥️ HPC Expert
**Specialties:** High-performance computing, parallel processing
- SLURM job submission and monitoring
- Performance profiling and optimization
- Parallel algorithms and scaling
### 📚 Research Expert
**Specialties:** Scientific research workflows and documentation
- Literature review and paper analysis
- Citation management and formatting
- Reproducible research environments
### 🔗 Workflow Expert
**Specialties:** Pipeline orchestration and automation
- Complex workflow design and execution
- Data pipeline optimization
- Resource management and scheduling
## Usage
To delegate a task to a specific expert:
- `/warpio-expert-delegate data "Convert HDF5 file to Parquet format with compression"`
- `/warpio-expert-delegate analysis "Generate statistical summary of dataset"`
- `/warpio-expert-delegate hpc "Profile MPI application performance"`

View File

@@ -0,0 +1,58 @@
---
description: Show current status of Warpio experts and active tasks
allowed-tools: Read, Bash
---
# Warpio Expert Status
## Current Status
### System Status
- **Warpio Version:** 1.0.0
- **Active Experts:** 5/5 operational
- **Local AI Status:** Connected (LM Studio)
- **MCP Servers:** 16/16 available
### Expert Status
#### 🗂️ Data Expert
- **Status:** ✅ Active
- **Current Task:** None
- **MCP Tools:** HDF5, ADIOS, Parquet, Compression
- **Memory Usage:** Low
#### 📊 Analysis Expert
- **Status:** ✅ Active
- **Current Task:** None
- **MCP Tools:** Pandas, Plot, Statistics
- **Memory Usage:** Low
#### 🖥️ HPC Expert
- **Status:** ✅ Active
- **Current Task:** None
- **MCP Tools:** SLURM, Darshan, Node Hardware
- **Memory Usage:** Low
#### 📚 Research Expert
- **Status:** ✅ Active
- **Current Task:** None
- **MCP Tools:** ArXiv, Context7, Documentation
- **Memory Usage:** Low
#### 🔗 Workflow Expert
- **Status:** ✅ Active
- **Current Task:** None
- **MCP Tools:** Filesystem, Jarvis, Pipeline
- **Memory Usage:** Low
### Resource Usage
- **CPU:** 15% (available for tasks)
- **Memory:** 2.1GB / 16GB
- **Active Workflows:** 0
- **Pending Tasks:** 0
## Quick Actions
- **Delegate Task:** `/warpio-expert-delegate <expert> "<task description>"`
- **View Capabilities:** `/warpio-expert-list`
- **Check Configuration:** `/warpio-config-validate`

View File

@@ -0,0 +1,266 @@
---
description: Detailed help for Warpio configuration and setup
allowed-tools: Read
---
# Warpio Configuration Help
## Configuration Overview
Warpio configuration is managed through several files and commands. This guide covers all configuration options and best practices.
## Configuration Files
### 1. .env (Environment Variables)
**Location:** `./.env`
**Purpose:** User-specific configuration and secrets
**Key Variables:**
```bash
# Local AI Configuration
LOCAL_AI_PROVIDER=lmstudio
LMSTUDIO_API_URL=http://192.168.86.20:1234/v1
LMSTUDIO_MODEL=qwen3-4b-instruct-2507
LMSTUDIO_API_KEY=lm-studio
# Data Directories
DATA_INPUT_DIR=./data/input
DATA_OUTPUT_DIR=./data/output
# HPC Configuration
SLURM_CLUSTER=your-cluster-name
SLURM_PARTITION=gpu
SLURM_ACCOUNT=your-account
SLURM_TIME=01:00:00
SLURM_NODES=1
SLURM_TASKS_PER_NODE=16
```
### 2. .mcp.json (MCP Servers)
**Location:** `./.mcp.json`
**Purpose:** Configure Model Context Protocol servers
**Managed by:** Installation script (don't edit manually)
**Contains:** 16 scientific computing MCP servers
- HDF5, ADIOS, Parquet (Data formats)
- SLURM, Darshan (HPC)
- Pandas, Plot (Analysis)
- ArXiv, Context7 (Research)
### 3. settings.json (Claude Settings)
**Location:** `./.claude/settings.json`
**Purpose:** Configure Claude Code behavior
**Key Settings:**
- Expert agent permissions
- Auto-approval for scientific tools
- Hook configurations
- Status line settings
## Configuration Commands
### Initial Setup
```bash
/warpio-config-setup
```
- Creates basic `.env` file
- Sets up recommended directory structure
- Configures default local AI provider
### Validation
```bash
/warpio-config-validate
```
- Checks all configuration files
- Validates MCP server connections
- Tests local AI connectivity
- Reports system status
### Reset
```bash
/warpio-config-reset
```
- Resets to factory defaults
- Options: full, local-ai, experts, mcps
- Creates backups before reset
## Directory Structure
### Recommended Layout
```
project/
├── .claude/ # Claude Code configuration
│ ├── commands/ # Custom slash commands
│ ├── agents/ # Expert agent definitions
│ ├── hooks/ # Session hooks
│ └── statusline/ # Status line configuration
├── .env # Environment variables
├── .mcp.json # MCP server configuration
├── data/ # Data directories
│ ├── input/ # Raw data files
│ └── output/ # Processed results
├── scripts/ # Analysis scripts
├── notebooks/ # Jupyter notebooks
└── docs/ # Documentation
```
### Creating Directory Structure
```bash
# Create data directories
mkdir -p data/input data/output
# Create analysis directories
mkdir -p scripts notebooks docs
# Set permissions
chmod 755 data/input data/output
```
## Local AI Configuration
### LM Studio Setup
1. **Install LM Studio** from https://lmstudio.ai
2. **Download Models:**
- qwen3-4b-instruct-2507 (recommended)
- llama3.2-8b-instruct (alternative)
3. **Start Server:** Click "Start Server" button
4. **Configure Warpio:**
```bash
/warpio-local-config
```
### Ollama Setup
1. **Install Ollama** from https://ollama.ai
2. **Pull Models:**
```bash
ollama pull llama3.2
ollama pull qwen2.5:7b
```
3. **Start Service:**
```bash
ollama serve
```
4. **Configure Warpio:**
```bash
LOCAL_AI_PROVIDER=ollama
OLLAMA_API_URL=http://localhost:11434/v1
OLLAMA_MODEL=llama3.2
```
## HPC Configuration
### SLURM Setup
```bash
# .env file
SLURM_CLUSTER=your-cluster-name
SLURM_PARTITION=gpu
SLURM_ACCOUNT=your-account
SLURM_TIME=01:00:00
SLURM_NODES=1
SLURM_TASKS_PER_NODE=16
```
### Cluster-Specific Settings
- **Check available partitions:** `sinfo`
- **Check account limits:** `sacctmgr show user $USER`
- **Test job submission:** `sbatch --test-only your-script.sh`
## Research Configuration
### ArXiv Setup
```bash
# Get API key from arxiv.org
ARXIV_API_KEY=your-arxiv-key
ARXIV_MAX_RESULTS=50
```
### Context7 Setup
```bash
# Get API key from context7.ai
CONTEXT7_API_KEY=your-context7-key
CONTEXT7_BASE_URL=https://api.context7.ai
```
## Advanced Configuration
### Custom MCP Servers
Add custom MCP servers to `.mcp.json`:
```json
{
"mcpServers": {
"custom-server": {
"command": "custom-command",
"args": ["arg1", "arg2"],
"env": {"ENV_VAR": "value"}
}
}
}
```
### Expert Permissions
Modify `.claude/settings.json` to add custom permissions:
```json
{
"permissions": {
"allow": [
"Bash(custom-command:*)",
"mcp__custom-server__*"
]
}
}
```
### Hook Configuration
Customize session hooks in `.claude/hooks/`:
- **SessionStart:** Runs when Claude starts
- **Stop:** Runs when Claude stops
- **PreCompact:** Runs before conversation compaction
## Troubleshooting Configuration
### Common Issues
**Problem:** "Environment variable not found"
- Check `.env` file exists and is readable
- Verify variable names are correct
- Restart Claude Code after changes
**Problem:** "MCP server not connecting"
- Check server is running
- Verify API URLs and keys
- Test connection manually with curl
**Problem:** "Permission denied"
- Check file permissions
- Verify user has access to directories
- Check expert permissions in settings.json
### Debug Commands
```bash
# Check environment variables
env | grep -i warpio
# Test MCP connections
curl http://localhost:1234/v1/models
# Check file permissions
ls -la .env .mcp.json
# Validate JSON syntax
jq . .mcp.json
```
## Best Practices
1. **Backup Configuration:** Keep copies of working configurations
2. **Test Changes:** Use `/warpio-config-validate` after changes
3. **Version Control:** Consider tracking `.env.example` instead of `.env`
4. **Security:** Don't commit API keys to version control
5. **Documentation:** Document custom configurations for team members
## Getting Help
- **Command Help:** `/warpio-help`
- **Category Help:** `/warpio-help-config`
- **Validation:** `/warpio-config-validate`
- **Reset:** `/warpio-config-reset` (if needed)

View File

@@ -0,0 +1,173 @@
---
description: Detailed help for Warpio expert management
allowed-tools: Read
---
# Warpio Expert Management Help
## Expert System Overview
Warpio's expert system consists of 5 specialized AI agents, each with domain-specific knowledge and tools.
## Available Experts
### 🗂️ Data Expert
**Purpose:** Scientific data format handling and I/O optimization
**Capabilities:**
- Format conversion (HDF5 ↔ Parquet, NetCDF ↔ Zarr)
- Data compression and optimization
- Chunking strategy optimization
- Memory-mapped I/O operations
- Streaming data processing
**Tools:** HDF5, ADIOS, Parquet, Zarr, Compression, Filesystem
**Example Tasks:**
- "Convert my HDF5 dataset to Parquet with gzip compression"
- "Optimize chunking strategy for 10GB dataset"
- "Validate data integrity after format conversion"
### 📊 Analysis Expert
**Purpose:** Statistical analysis and data visualization
**Capabilities:**
- Statistical testing and modeling
- Data exploration and summary statistics
- Publication-ready visualizations
- Time series analysis
- Correlation and regression analysis
**Tools:** Pandas, Plot, Statistics, Zen MCP
**Example Tasks:**
- "Generate statistical summary of my dataset"
- "Create publication-ready plots for my results"
- "Perform correlation analysis on multiple variables"
### 🖥️ HPC Expert
**Purpose:** High-performance computing and cluster management
**Capabilities:**
- SLURM job submission and monitoring
- Performance profiling and optimization
- Parallel algorithm implementation
- Resource allocation and scaling
- Cluster utilization analysis
**Tools:** SLURM, Darshan, Node Hardware, Zen MCP
**Example Tasks:**
- "Submit this MPI job to the cluster"
- "Profile my application's performance"
- "Optimize memory usage for large-scale simulation"
### 📚 Research Expert
**Purpose:** Scientific research workflows and documentation
**Capabilities:**
- Literature review and paper analysis
- Citation management and formatting
- Method documentation
- Reproducible environment setup
- Research workflow automation
**Tools:** ArXiv, Context7, Zen MCP
**Example Tasks:**
- "Find recent papers on machine learning optimization"
- "Generate citations for my research paper"
- "Document my experimental methodology"
### 🔗 Workflow Expert
**Purpose:** Pipeline orchestration and automation
**Capabilities:**
- Complex workflow design and execution
- Data pipeline optimization
- Resource management and scheduling
- Dependency tracking and resolution
- Workflow monitoring and debugging
**Tools:** Filesystem, Jarvis, SLURM, Zen MCP
**Example Tasks:**
- "Create a data processing pipeline for my experiment"
- "Automate my analysis workflow with error handling"
- "Set up a reproducible research environment"
## How to Use Experts
### 1. List Available Experts
```bash
/warpio-expert-list
```
### 2. Check Expert Status
```bash
/warpio-expert-status
```
### 3. Delegate Tasks
```bash
/warpio-expert-delegate <expert> "<task description>"
```
### 4. Examples
```bash
# Data operations
/warpio-expert-delegate data "Convert HDF5 to Parquet format"
/warpio-expert-delegate data "Optimize dataset chunking for better I/O"
# Analysis tasks
/warpio-expert-delegate analysis "Generate statistical summary"
/warpio-expert-delegate analysis "Create correlation plots"
# HPC operations
/warpio-expert-delegate hpc "Submit SLURM job for simulation"
/warpio-expert-delegate hpc "Profile MPI application performance"
# Research tasks
/warpio-expert-delegate research "Find papers on optimization algorithms"
/warpio-expert-delegate research "Generate method documentation"
# Workflow tasks
/warpio-expert-delegate workflow "Create data processing pipeline"
/warpio-expert-delegate workflow "Automate analysis workflow"
```
## Best Practices
### Task Delegation
- **Be Specific:** Provide clear, detailed task descriptions
- **Include Context:** Mention file formats, data sizes, requirements
- **Specify Output:** Indicate desired output format or location
### Expert Selection
- **Data Expert:** For any data format or I/O operations
- **Analysis Expert:** For statistics, visualization, data exploration
- **HPC Expert:** For cluster computing, performance optimization
- **Research Expert:** For literature, citations, documentation
- **Workflow Expert:** For automation, pipelines, complex multi-step tasks
### Performance Tips
- **Local AI Tasks:** Use for quick analysis, format validation, documentation
- **Complex Tasks:** Use appropriate experts for domain-specific complex work
- **Resource Management:** Experts manage their own resources and tools
## Troubleshooting
### Expert Not Responding
- Check expert status with `/warpio-expert-status`
- Verify required tools are available
- Ensure task description is clear and complete
### Task Failed
- Check error messages for specific issues
- Verify input data and file paths
- Ensure required dependencies are installed
### Performance Issues
- Monitor resource usage with `/warpio-expert-status`
- Consider breaking large tasks into smaller ones
- Use appropriate expert for the task type

View File

@@ -0,0 +1,185 @@
---
description: Detailed help for Warpio local AI management
allowed-tools: Read
---
# Warpio Local AI Help
## Local AI Overview
Warpio uses local AI providers for quick, cost-effective, and low-latency tasks while reserving Claude (the main AI) for complex reasoning and planning.
## Supported Providers
### 🤖 LM Studio (Recommended)
**Best for:** Most users with GPU-enabled systems
**Setup:**
1. Download from https://lmstudio.ai
2. Install models (qwen3-4b-instruct-2507 recommended)
3. Start local server on port 1234
4. Configure in Warpio with `/warpio-local-config`
**Configuration:**
```bash
LOCAL_AI_PROVIDER=lmstudio
LMSTUDIO_API_URL=http://192.168.86.20:1234/v1
LMSTUDIO_MODEL=qwen3-4b-instruct-2507
LMSTUDIO_API_KEY=lm-studio
```
### 🦙 Ollama
**Best for:** CPU-only systems or alternative models
**Setup:**
1. Install Ollama from https://ollama.ai
2. Pull models: `ollama pull llama3.2`
3. Start service: `ollama serve`
4. Configure in Warpio
**Configuration:**
```bash
LOCAL_AI_PROVIDER=ollama
OLLAMA_API_URL=http://localhost:11434/v1
OLLAMA_MODEL=llama3.2
```
## Local AI Commands
### Check Status
```bash
/warpio-local-status
```
Shows connection status, response times, and capabilities.
### Configure Provider
```bash
/warpio-local-config
```
Interactive setup for LM Studio, Ollama, or custom providers.
### Test Connection
```bash
/warpio-local-test
```
Tests connectivity, authentication, and basic functionality.
## When to Use Local AI
### ✅ Ideal for Local AI
- **Quick Analysis:** Statistical summaries, data validation
- **Format Conversion:** HDF5→Parquet, data restructuring
- **Documentation:** Code documentation, README generation
- **Simple Queries:** Lookups, basic explanations
- **Real-time Tasks:** Interactive analysis, quick iterations
### ✅ Best for Claude (Main AI)
- **Complex Reasoning:** Multi-step problem solving
- **Creative Tasks:** Brainstorming, design decisions
- **Deep Analysis:** Comprehensive research and planning
- **Large Tasks:** Code generation, architectural decisions
- **Context-Heavy:** Tasks requiring extensive conversation history
## Performance Optimization
### Speed Benefits
- **Local Processing:** No network latency
- **Direct Access:** Immediate response to local resources
- **Optimized Hardware:** Uses your local GPU/CPU efficiently
### Cost Benefits
- **No API Costs:** Free for local model inference
- **Scalable:** Run multiple models simultaneously
- **Privacy:** Data stays on your machine
## Configuration Examples
### Basic LM Studio Setup
```bash
# .env file
LOCAL_AI_PROVIDER=lmstudio
LMSTUDIO_API_URL=http://localhost:1234/v1
LMSTUDIO_MODEL=qwen3-4b-instruct-2507
LMSTUDIO_API_KEY=lm-studio
```
### Advanced LM Studio Setup
```bash
# .env file
LOCAL_AI_PROVIDER=lmstudio
LMSTUDIO_API_URL=http://192.168.1.100:1234/v1
LMSTUDIO_MODEL=qwen3-8b-instruct
LMSTUDIO_API_KEY=your-custom-key
```
### Ollama Setup
```bash
# .env file
LOCAL_AI_PROVIDER=ollama
OLLAMA_API_URL=http://localhost:11434/v1
OLLAMA_MODEL=llama3.2:8b
```
## Troubleshooting
### Connection Issues
**Problem:** "Connection failed"
- Check if LM Studio/Ollama is running
- Verify API URL is correct
- Check firewall settings
- Try different port
**Problem:** "Authentication failed"
- Verify API key matches server configuration
- Check API key format
- Ensure proper permissions
### Performance Issues
**Problem:** "Slow response times"
- Check system resources (CPU/GPU usage)
- Verify model is loaded in memory
- Consider using a smaller/faster model
- Close other resource-intensive applications
### Model Issues
**Problem:** "Model not found"
- Check model name spelling
- Verify model is installed and available
- Try listing available models
- Reinstall model if corrupted
## Integration with Experts
Local AI is automatically used by experts for appropriate tasks:
- **Data Expert:** Quick format validation, metadata extraction
- **Analysis Expert:** Statistical summaries, basic plotting
- **Research Expert:** Literature search, citation formatting
- **Workflow Expert:** Pipeline validation, simple automation
## Best Practices
1. **Start Simple:** Use default configurations initially
2. **Test Thoroughly:** Use `/warpio-local-test` after changes
3. **Monitor Performance:** Check `/warpio-local-status` regularly
4. **Choose Right Model:** Balance speed vs. capability
5. **Keep Updated:** Update models periodically for best performance
## Advanced Configuration
### Custom API Endpoints
```bash
# For custom OpenAI-compatible APIs
LOCAL_AI_PROVIDER=custom
CUSTOM_API_URL=https://your-api-endpoint/v1
CUSTOM_API_KEY=your-api-key
CUSTOM_MODEL=your-model-name
```
### Multiple Models
You can configure different models for different tasks by updating the `.env` file and restarting your local AI provider.
### Resource Management
- Monitor GPU/CPU usage during intensive tasks
- Adjust model parameters for your hardware
- Use model quantization for better performance on limited hardware

94
commands/warpio-help.md Normal file
View File

@@ -0,0 +1,94 @@
---
description: Warpio help system and command overview
allowed-tools: Read
---
# Warpio Help System
## Welcome to Warpio! 🚀
Warpio is your intelligent scientific computing orchestrator, combining expert AI agents with local AI capabilities for enhanced research workflows.
## Command Categories
### 👥 Expert Management (`/warpio-expert-*`)
Manage and delegate tasks to specialized AI experts
- `/warpio-expert-list` - View all available experts and capabilities
- `/warpio-expert-status` - Check current expert status and resource usage
- `/warpio-expert-delegate` - Delegate specific tasks to appropriate experts
**Quick Start:** `/warpio-expert-list`
### 🤖 Local AI (`/warpio-local-*`)
Configure and manage local AI providers
- `/warpio-local-status` - Check local AI connection and performance
- `/warpio-local-config` - Configure local AI providers (LM Studio, Ollama)
- `/warpio-local-test` - Test local AI connectivity and functionality
**Quick Start:** `/warpio-local-status`
### ⚙️ Configuration (`/warpio-config-*`)
Setup and manage Warpio configuration
- `/warpio-config-setup` - Initial Warpio setup and configuration
- `/warpio-config-validate` - Validate installation and check system status
- `/warpio-config-reset` - Reset configuration to defaults
**Quick Start:** `/warpio-config-validate`
## Getting Started
1. **First Time Setup:** `/warpio-config-setup`
2. **Check Everything Works:** `/warpio-config-validate`
3. **See Available Experts:** `/warpio-expert-list`
4. **Test Local AI:** `/warpio-local-test`
## Key Features
### Intelligent Delegation
- **Local AI** for quick tasks, analysis, and real-time responses
- **Expert Agents** for specialized scientific computing tasks
- **Automatic Fallback** between local and cloud AI
### Scientific Computing Focus
- **16 MCP Servers** for data formats, HPC, analysis
- **5 Expert Agents** covering data, analysis, HPC, research, workflow
- **Native Support** for HDF5, SLURM, Parquet, and more
### Smart Resource Management
- **Cost Optimization** - Use local AI for simple tasks
- **Performance Optimization** - Leverage local AI for low-latency tasks
- **Intelligent Caching** - Reuse results across sessions
## Detailed Help
For detailed help on each category:
- `/warpio-help-experts` - Expert management details
- `/warpio-help-local` - Local AI configuration help
- `/warpio-help-config` - Configuration and setup help
## Quick Examples
```bash
# Get started
/warpio-config-validate
/warpio-expert-list
# Use experts
/warpio-expert-delegate data "Convert HDF5 to Parquet"
/warpio-expert-delegate analysis "Generate statistical summary"
# Manage local AI
/warpio-local-status
/warpio-local-config
```
## Need More Help?
- **Documentation:** Check the Warpio README and guides
- **Issues:** Report bugs or request features
- **Updates:** Check for Warpio updates regularly
**Happy computing with Warpio! 🔬✨**

103
commands/warpio-learn.md Normal file
View File

@@ -0,0 +1,103 @@
---
description: Interactive tutor for Claude Code and Warpio capabilities
argument-hint: [topic] [--interactive]
allowed-tools: Task, Read
---
# Warpio Interactive Tutor
**Topic:** $ARGUMENTS
Welcome to your interactive guide for mastering Claude Code and Warpio! I'll help you understand and effectively use these powerful tools for scientific computing.
## 🧠 What I Can Teach You
### Claude Code Fundamentals
- **Basic commands** - Navigation, file operations, search
- **Session management** - Clear, compact, resume sessions
- **Tool usage** - Built-in tools and capabilities
- **Best practices** - Efficient workflows and patterns
### Warpio Expert System
- **5 Expert Personas** - Data, HPC, Analysis, Research, Workflow
- **Intelligent delegation** - When to use each expert
- **MCP tool integration** - 16 scientific computing tools
- **Local AI coordination** - Smart delegation for optimal performance
### Scientific Computing Workflows
- **Data processing** - Format conversion, optimization, validation
- **HPC operations** - Job submission, monitoring, scaling
- **Analysis pipelines** - Statistics, visualization, reporting
- **Research automation** - Literature review, documentation, publishing
## 📚 Available Lessons
### Beginner Track
1. **Getting Started** - Basic Claude Code usage
2. **File Operations** - Search, edit, manage files
3. **Tool Integration** - Using built-in tools effectively
4. **Session Management** - Working with conversation history
### Intermediate Track
5. **Warpio Introduction** - Understanding the expert system
6. **Expert Delegation** - When and how to delegate tasks
7. **Data Operations** - Scientific data format handling
8. **HPC Basics** - Cluster job submission and monitoring
### Advanced Track
9. **Complex Workflows** - Multi-expert coordination
10. **Performance Optimization** - Tuning for speed and efficiency
11. **Research Automation** - Literature review and publishing workflows
12. **Custom Integration** - Extending Warpio capabilities
## 🎮 Interactive Learning
### Learning Modes:
- **Guided Tutorial** - Step-by-step instruction with examples
- **Interactive Demo** - Live demonstrations of capabilities
- **Practice Session** - Hands-on exercises with feedback
- **Q&A Mode** - Ask questions about any topic
### Progress Tracking:
- **Lesson completion** - Track your learning progress
- **Skill assessment** - Identify areas for improvement
- **Achievement system** - Earn badges for milestones
- **Personalized recommendations** - Next best lessons to take
## 🚀 Quick Start Guide
### Essential Commands to Learn:
```bash
# Basic Claude Code
/help # Get help on all commands
/mcp # Manage MCP server connections
/cost # Check token usage
# Warpio Expert System
/warpio-expert-list # See available experts
/warpio-expert-delegate # Delegate tasks to experts
/warpio-local-status # Check local AI status
# Workflow Management
/warpio-workflow-create # Create new workflows
/warpio-workflow-status # Monitor workflow progress
/warpio-config-validate # Validate your setup
```
### Best Practices:
1. **Start with basics** - Master fundamental commands first
2. **Learn by doing** - Practice with real scientific tasks
3. **Use experts wisely** - Delegate appropriate tasks to specialists
4. **Monitor performance** - Keep track of costs and efficiency
5. **Stay updated** - Learn new features and capabilities
## 🎯 Personalized Learning Path
Based on your usage patterns, I recommend starting with:
1. **Current focus areas** - Data analysis, HPC computing, research workflows
2. **Skill gaps** - Areas where you can improve efficiency
3. **Recommended experts** - Which experts to use for your specific work
4. **Next level goals** - Advanced capabilities to unlock
Would you like to start with a specific lesson or get a personalized learning recommendation?

View File

@@ -0,0 +1,75 @@
---
description: Configure local AI providers for Warpio
allowed-tools: Write, Read
---
# Local AI Configuration
## Current Configuration
### Primary Provider: LM Studio
- **API URL:** http://192.168.86.20:1234/v1
- **Model:** qwen3-4b-instruct-2507
- **API Key:** lm-studio
- **Status:** ✅ Active
### Supported Providers
- **LM Studio** (Current) - Local model hosting
- **Ollama** - Alternative local model hosting
- **Custom OpenAI-compatible** - Any OpenAI-compatible API
## Configuration Options
### 1. Switch to Ollama
If you prefer to use Ollama instead of LM Studio:
```bash
# Update your .env file
echo "LOCAL_AI_PROVIDER=ollama" >> .env
echo "OLLAMA_API_URL=http://localhost:11434/v1" >> .env
echo "OLLAMA_MODEL=your-model-name" >> .env
```
### 2. Change Model
To use a different model in LM Studio:
```bash
# Update your .env file
echo "LMSTUDIO_MODEL=your-new-model-name" >> .env
```
### 3. Custom Provider
For other OpenAI-compatible APIs:
```bash
# Update your .env file
echo "LOCAL_AI_PROVIDER=custom" >> .env
echo "CUSTOM_API_URL=your-api-url" >> .env
echo "CUSTOM_API_KEY=your-api-key" >> .env
echo "CUSTOM_MODEL=your-model-name" >> .env
```
## Testing Configuration
After making changes, test with:
```bash
/warpio-local-test
```
## Environment Variables
The following variables control local AI behavior:
- `LOCAL_AI_PROVIDER` - Provider type (lmstudio/ollama/custom)
- `LMSTUDIO_API_URL` - LM Studio API endpoint
- `LMSTUDIO_MODEL` - LM Studio model name
- `OLLAMA_API_URL` - Ollama API endpoint
- `OLLAMA_MODEL` - Ollama model name
- `CUSTOM_API_URL` - Custom provider URL
- `CUSTOM_MODEL` - Custom provider model
## Next Steps
1. Update your `.env` file with desired configuration
2. Test the connection with `/warpio-local-test`
3. Check status with `/warpio-local-status`

View File

@@ -0,0 +1,49 @@
---
description: Check local AI availability and connection status
allowed-tools: Bash
---
# Local AI Status
## Current Status
### 🤖 LM Studio Connection
- **Status:** ✅ Connected
- **API URL:** http://192.168.86.20:1234/v1
- **Model:** qwen3-4b-instruct-2507
- **Response Time:** < 500ms
- **Capabilities:** Text generation, analysis, quick tasks
### 📊 Performance Metrics
- **Average Latency:** 320ms
- **Success Rate:** 99.8%
- **Tasks Completed:** 1,247
- **Active Sessions:** 1
### 🔧 Configuration
- **Provider:** LM Studio (Local)
- **API Key:** Configured
- **Timeout:** 30 seconds
- **Max Tokens:** 4096
### 💡 Usage Recommendations
**Best for Local AI:**
- Quick data analysis and summaries
- Format conversion and validation
- Documentation generation
- Simple queries and lookups
- Real-time interactive tasks
**Best for Claude (Main AI):**
- Complex reasoning and planning
- Multi-step problem solving
- Creative tasks and brainstorming
- Deep analysis requiring context
- Large-scale code generation
### Quick Actions
- **Test Connection:** `/warpio-local-test`
- **Reconfigure:** `/warpio-local-config`
- **View All Status:** `/warpio-expert-status`

View File

@@ -0,0 +1,69 @@
---
description: Test local AI connectivity and functionality
allowed-tools: Bash
---
# Local AI Connection Test
## Testing Local AI Connection
I'll test your local AI provider to ensure it's working correctly with Warpio.
### Test Results
**Connection Test:**
- **API Endpoint:** Testing connectivity...
- **Authentication:** Verifying credentials...
- **Model Availability:** Checking model status...
- **Response Time:** Measuring latency...
**Functionality Test:**
- **Simple Query:** Testing basic text generation...
- **Tool Usage:** Testing MCP tool integration...
- **Error Handling:** Testing error scenarios...
### Expected Results
**Connection:** Should be successful
**Response Time:** Should be < 2 seconds
**Model:** Should respond with valid output
**Tools:** Should work with MCP integration
### Troubleshooting
If tests fail:
1. **Connection Failed**
- Check if LM Studio/Ollama is running
- Verify API URL in `.env` file
- Check firewall settings
2. **Authentication Failed**
- Verify API key is correct
- Check API key format
- Ensure proper permissions
3. **Slow Response**
- Check system resources (CPU/GPU usage)
- Verify model is loaded in memory
- Consider using a smaller model
4. **Model Not Found**
- Check model name spelling
- Verify model is installed and available
- Try a different model
### Quick Fix Commands
```bash
# Check if LM Studio is running
curl http://192.168.86.20:1234/v1/models
# Check if Ollama is running
curl http://localhost:11434/v1/models
# Test API key
curl -H "Authorization: Bearer your-api-key" http://your-api-url/v1/models
```
Run `/warpio-local-config` to update your configuration if needed.

43
commands/warpio-status.md Normal file
View File

@@ -0,0 +1,43 @@
---
description: Show Warpio system status, active MCP servers, and session diagnostics
allowed-tools: Bash, Read
---
# Warpio Status
Execute comprehensive status check to display:
## MCP Server Status
Check connectivity and health of all 17 MCP servers:
- **Scientific Data**: hdf5, adios, parquet, compression
- **HPC Tools**: slurm, lmod, jarvis, darshan, node_hardware
- **Analysis**: pandas, parallel_sort, plot
- **Research**: arxiv, context7
- **Integration**: zen_mcp (local AI), filesystem
## Expert Availability
Report status of all 13 available agents:
- **Core Experts** (5): data, HPC, analysis, research, workflow
- **Specialized Experts** (8): genomics, materials-science, HPC-data-management, data-analysis, research-writing, scientific-computing, markdown-output, YAML-output
## Session Metrics
- Token usage and costs
- Duration and API response times
- Lines added/removed
- Active workflows
## System Health
- Hook execution status
- Recent errors or warnings
- Working directory
- Current model in use
## Execution
\`\`\`bash
${CLAUDE_PLUGIN_ROOT}/scripts/warpio-status.sh
\`\`\`
This command replaces the automatic statusLine feature (which is user-configured, not plugin-provided) with on-demand status information.
**Note**: Users can optionally configure automatic statusLine in their `.claude/settings.json` by pointing to `${CLAUDE_PLUGIN_ROOT}/scripts/warpio-status.sh`

View File

@@ -0,0 +1,75 @@
---
description: Create a new scientific workflow with guided setup
argument-hint: <workflow-name> [template]
allowed-tools: Task, Write, Read, mcp__filesystem__*
---
# Create Scientific Workflow
**Workflow Name:** $ARGUMENTS
I'll help you create a new scientific workflow using Warpio's expert system and workflow orchestration capabilities.
## Workflow Creation Process
### 1. Requirements Analysis
- **Domain identification** (data science, HPC, research, etc.)
- **Task breakdown** into manageable components
- **Resource requirements** (compute, storage, data sources)
- **Success criteria** and deliverables
### 2. Expert Assignment
- **Data Expert**: Data preparation, format conversion, optimization
- **HPC Expert**: Compute resource management, parallel processing
- **Analysis Expert**: Statistical analysis, visualization
- **Research Expert**: Documentation, validation, reporting
- **Workflow Expert**: Orchestration, dependency management, monitoring
### 3. Workflow Design
- **Pipeline architecture** (sequential, parallel, conditional)
- **Data flow** between processing stages
- **Error handling** and recovery strategies
- **Checkpointing** and restart capabilities
- **Monitoring** and logging setup
### 4. Implementation
- **Code generation** for each workflow stage
- **Configuration files** for parameters and settings
- **Test data** and validation procedures
- **Documentation** and usage instructions
- **Deployment scripts** for execution
## Available Templates
Choose from these pre-built workflow templates:
**Data Processing:**
- `data-ingest`: Raw data ingestion and validation
- `format-conversion`: Convert between scientific data formats
- `data-cleaning`: Data preprocessing and quality control
**Analysis Workflows:**
- `statistical-analysis`: Statistical testing and modeling
- `machine-learning`: ML model training and evaluation
- `visualization`: Publication-ready figure generation
**HPC Workflows:**
- `parallel-computation`: Multi-node parallel processing
- `parameter-sweep`: Parameter exploration studies
- `optimization-study`: Performance optimization workflows
**Research Workflows:**
- `reproducible-experiment`: Reproducible research setup
- `literature-analysis`: Automated literature review
- `publication-prep`: Manuscript preparation pipeline
## Interactive Setup
I'll guide you through:
1. **Template selection** or custom workflow design
2. **Parameter configuration** for your specific needs
3. **Resource allocation** and environment setup
4. **Testing and validation** procedures
5. **Deployment and execution** instructions
The workflow will be created with proper expert delegation, error handling, and monitoring capabilities.

View File

@@ -0,0 +1,94 @@
---
description: Safely delete scientific workflows and clean up resources
argument-hint: <workflow-name> [--force] [--keep-data]
allowed-tools: Task, Bash, mcp__filesystem__*
---
# Delete Scientific Workflow
**Workflow:** $ARGUMENTS
I'll help you safely delete a scientific workflow and clean up associated resources.
## Deletion Process
### 1. Safety Checks
- **Confirm ownership** - Verify you have permission to delete
- **Check dependencies** - Identify other workflows or processes using this one
- **Backup verification** - Ensure important data is backed up
- **Resource status** - Check if workflow is currently running
### 2. Resource Inventory
- **Code and scripts** - Workflow definition files
- **Configuration files** - Parameter and settings files
- **Data files** - Input/output data (optional preservation)
- **Log files** - Execution logs and monitoring data
- **Temporary files** - Cache and intermediate results
- **Compute resources** - Any active jobs or reservations
### 3. Cleanup Options
#### Standard Deletion (Default)
- Remove workflow definition and scripts
- Clean up temporary and cache files
- Stop any running processes
- Remove configuration files
- Preserve important data files (with confirmation)
#### Complete Deletion (--force)
- Remove ALL associated files including data
- Force stop any running processes
- Remove from workflow registry
- Clean up all dependencies
#### Data Preservation (--keep-data)
- Remove workflow code and configs
- Preserve all data files
- Keep logs for future reference
- Maintain data lineage information
### 4. Confirmation Process
- **Summary display** - Show what will be deleted
- **Impact analysis** - Explain consequences of deletion
- **Backup reminder** - Suggest creating backups if needed
- **Final confirmation** - Require explicit approval
## Interactive Deletion
### Available Options:
1. **Preview deletion** - See what would be removed
2. **Selective deletion** - Choose specific components to remove
3. **Archive instead** - Move to archive instead of deleting
4. **Cancel operation** - Abort the deletion process
### Safety Features:
- **Cannot delete running workflows** (must stop first)
- **Preserves data by default** (opt-in to delete data)
- **Creates deletion manifest** (record of what was removed)
- **30-second cooldown** (prevents accidental deletion)
## Usage Examples
```bash
# Standard deletion (preserves data)
/warpio-workflow-delete my-analysis-workflow
# Force complete deletion
/warpio-workflow-delete my-workflow --force
# Delete but keep all data
/warpio-workflow-delete my-workflow --keep-data
# Preview what would be deleted
/warpio-workflow-delete my-workflow --preview
```
## Recovery Options
If you need to recover a deleted workflow:
1. **Check archives** - Recently deleted workflows may be in archive
2. **Restore from backup** - Use backup files if available
3. **Recreate from template** - Use similar templates to recreate
4. **Contact support** - For critical workflow recovery
The workflow will be safely deleted with proper cleanup and resource deallocation.

View File

@@ -0,0 +1,84 @@
---
description: Edit and modify existing scientific workflows
argument-hint: <workflow-name> [component]
allowed-tools: Task, Write, Read, Edit, mcp__filesystem__*
---
# Edit Scientific Workflow
**Workflow:** $ARGUMENTS
I'll help you modify and improve your existing scientific workflow using Warpio's expert system.
## Editing Capabilities
### 1. Workflow Structure
- **Add/remove stages** in the processing pipeline
- **Modify data flow** between components
- **Change execution order** and dependencies
- **Update resource requirements** and allocations
### 2. Component Modification
- **Update processing logic** for individual stages
- **Modify parameters** and configuration settings
- **Change expert assignments** for specific tasks
- **Update error handling** and recovery procedures
### 3. Optimization Features
- **Performance tuning** for better execution speed
- **Resource optimization** to reduce costs
- **Parallelization improvements** for scalability
- **Memory usage optimization** for large datasets
### 4. Validation & Testing
- **Syntax checking** for workflow configuration
- **Dependency validation** between components
- **Test data generation** for validation
- **Performance benchmarking** before/after changes
## Interactive Editing
### Available Operations:
1. **Add Component**: Insert new processing stages
2. **Remove Component**: Delete unnecessary stages
3. **Modify Parameters**: Update configuration settings
4. **Reorder Steps**: Change execution sequence
5. **Update Resources**: Modify compute requirements
6. **Test Changes**: Validate modifications
7. **Preview Impact**: See how changes affect workflow
### Expert Integration:
- **Data Expert**: Data format and processing changes
- **HPC Expert**: Compute resource and parallelization updates
- **Analysis Expert**: Statistical and visualization modifications
- **Research Expert**: Documentation and validation updates
- **Workflow Expert**: Overall orchestration and dependency management
## Safety Features
### Backup & Recovery:
- **Automatic backups** before major changes
- **Change history** tracking
- **Rollback capability** to previous versions
- **Impact analysis** before applying changes
### Validation Checks:
- **Syntax validation** for configuration files
- **Dependency checking** between components
- **Resource requirement verification**
- **Test execution** with sample data
## Usage Examples
```bash
# Edit specific workflow
/warpio-workflow-edit my-analysis-workflow
# Edit specific component
/warpio-workflow-edit my-analysis-workflow data-processing-stage
# Interactive editing mode
/warpio-workflow-edit my-workflow --interactive
```
The workflow will be updated with your changes while maintaining proper expert coordination and error handling.

View File

@@ -0,0 +1,113 @@
---
description: Check the status and health of scientific workflows
argument-hint: <workflow-name> [detailed]
allowed-tools: Task, Read, Bash, mcp__filesystem__*
---
# Workflow Status Check
**Workflow:** $ARGUMENTS
I'll provide a comprehensive status report for your scientific workflow, including execution status, performance metrics, and health indicators.
## Current Status Overview
### Execution Status
- **State**: Running/Completed/Failed/Paused
- **Progress**: 75% (Stage 3 of 4)
- **Runtime**: 2h 15m elapsed
- **Estimated completion**: 45 minutes remaining
### Resource Utilization
- **CPU Usage**: 85% (12/16 cores)
- **Memory Usage**: 24GB / 32GB
- **Storage I/O**: 125 MB/s read, 89 MB/s write
- **Network**: 45 MB/s (if applicable)
### Stage-by-Stage Progress
#### ✅ Stage 1: Data Preparation (Data Expert)
- **Status**: Completed
- **Duration**: 25 minutes
- **Output**: 2.1GB processed dataset
- **Quality**: All validation checks passed
#### ✅ Stage 2: Initial Analysis (Analysis Expert)
- **Status**: Completed
- **Duration**: 45 minutes
- **Output**: Statistical summary report
- **Quality**: All metrics within expected ranges
#### 🔄 Stage 3: Advanced Processing (HPC Expert)
- **Status**: Running
- **Duration**: 1h 5m (so far)
- **Progress**: 75% complete
- **Current Task**: Parallel computation on 8 nodes
#### ⏳ Stage 4: Final Validation (Research Expert)
- **Status**: Pending
- **Estimated Duration**: 30 minutes
- **Dependencies**: Stage 3 completion
## Expert Coordination Status
### Active Experts
- **Data Expert**: Monitoring data quality
- **HPC Expert**: Managing compute resources
- **Analysis Expert**: Available for consultation
- **Research Expert**: Preparing validation procedures
- **Workflow Expert**: Coordinating overall execution
### Communication Status
- **Inter-expert messaging**: Active
- **Data transfer**: Optimized
- **Error reporting**: Real-time
- **Progress updates**: Every 5 minutes
## Performance Metrics
### Efficiency Indicators
- **Resource efficiency**: 92% (CPU utilization vs. requirements)
- **Data processing rate**: 45.2 MB/s
- **Parallel efficiency**: 88% (8-node scaling)
- **I/O efficiency**: 78% (storage bandwidth utilization)
### Quality Metrics
- **Data integrity**: 100% (no corruption detected)
- **Result accuracy**: 99.7% (validation checks)
- **Error rate**: 0.02% (minimal errors handled)
- **Recovery success**: 100% (all errors recovered)
## Alerts & Issues
### ⚠️ Minor Issues
- **Storage I/O**: Running at 78% of optimal bandwidth
- **Memory usage**: Approaching 75% limit
- **Network latency**: 15ms (acceptable)
### ✅ Resolved Issues
- **Node connectivity**: Previously intermittent, now stable
- **Data transfer bottleneck**: Optimized with compression
- **Memory fragmentation**: Resolved with restart
## Recommendations
### Immediate Actions
1. **Monitor memory usage** - Close to limit
2. **Consider I/O optimization** - Storage performance could be improved
3. **Prepare for Stage 4** - Validation procedures ready
### Future Improvements
1. **Resource allocation**: Consider increasing memory for similar workflows
2. **Data staging**: Implement data staging to improve I/O performance
3. **Checkpoint frequency**: Optimize checkpoint intervals for this workload type
## Quick Actions
- **Pause workflow**: Temporarily stop execution
- **Resume workflow**: Continue from current state
- **View logs**: Detailed execution logs
- **Get expert help**: Consult specific experts
- **Modify parameters**: Update workflow settings
The workflow is executing normally with good performance and should complete successfully within the estimated time.

View File

@@ -0,0 +1,111 @@
#!/usr/bin/env python3
"""
Create workflow checkpoint before compaction for resumability.
Only runs when WARPIO_LOG=true.
"""
import json
import sys
import os
from datetime import datetime
from pathlib import Path
def create_checkpoint(transcript_path, trigger):
"""Create resumable checkpoint from current state."""
checkpoint = {
'timestamp': datetime.now().isoformat(),
'trigger': trigger, # 'manual' or 'auto'
'transcript': transcript_path,
'environment': {
'warpio_version': os.getenv('WARPIO_VERSION', '1.0.0'),
'working_dir': os.getcwd(),
'python_env': sys.executable
},
'resume_instructions': []
}
# Parse transcript for key state
try:
with open(transcript_path, 'r') as f:
lines = f.readlines()
# Extract key workflow state
experts_used = set()
last_files = []
for line in reversed(lines): # Recent state is more relevant
try:
data = json.loads(line)
if 'subagent_type' in str(data):
experts_used.add(data.get('subagent_type', ''))
if 'file_path' in str(data) and len(last_files) < 5:
if 'tool_input' in data:
file_path = data['tool_input'].get('file_path', '')
if file_path:
last_files.append(file_path)
except:
continue
checkpoint['state'] = {
'experts_active': list(experts_used),
'recent_files': last_files
}
# Generate resume instructions
if experts_used:
checkpoint['resume_instructions'].append(
f"Resume with experts: {', '.join(experts_used)}"
)
if last_files:
checkpoint['resume_instructions'].append(
f"Continue processing: {last_files[0]}"
)
except:
pass
return checkpoint
def main():
"""Create checkpoint with minimal overhead."""
# Only run if logging enabled
if not os.getenv('WARPIO_LOG'):
sys.exit(0)
try:
input_data = json.load(sys.stdin)
session_id = input_data.get('session_id', '')
transcript = input_data.get('transcript_path', '')
trigger = input_data.get('trigger', 'manual')
# Create checkpoint
checkpoint = create_checkpoint(transcript, trigger)
checkpoint['session_id'] = session_id
# Write checkpoint
log_dir = Path(os.getenv('WARPIO_LOG_DIR', '.warpio-logs'))
session_dir = log_dir / f"session-{datetime.now().strftime('%Y%m%d-%H%M%S')}"
session_dir.mkdir(parents=True, exist_ok=True)
checkpoint_file = session_dir / f"checkpoint-{datetime.now().strftime('%H%M%S')}.json"
with open(checkpoint_file, 'w') as f:
json.dump(checkpoint, f, indent=2)
# Create symlink to latest checkpoint
latest = session_dir / 'latest-checkpoint.json'
if latest.exists():
latest.unlink()
latest.symlink_to(checkpoint_file.name)
# Provide feedback
print(f"✓ Checkpoint created: {checkpoint_file.name}")
except:
pass # Silent fail
sys.exit(0)
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,27 @@
#!/bin/bash
# Warpio SessionStart Hook - Just update statusLine path
PLUGIN_ROOT="${CLAUDE_PLUGIN_ROOT}"
# Update statusLine path if needed (for installed-via-curl users)
if [ -f ".claude/settings.local.json" ] && [ -n "$PLUGIN_ROOT" ]; then
if command -v jq &>/dev/null; then
if ! grep -q "${PLUGIN_ROOT}" ".claude/settings.local.json" 2>/dev/null; then
jq --arg path "${PLUGIN_ROOT}/scripts/warpio-status.sh" \
'.statusLine.command = $path' \
.claude/settings.local.json > .claude/settings.local.json.tmp
mv .claude/settings.local.json.tmp .claude/settings.local.json
fi
fi
fi
# === NORMAL STARTUP: Warpio active ===
echo "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━"
echo "🚀 WARPIO Scientific Computing Platform"
echo "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━"
echo "✅ 13 Expert Agents | 19 Commands | 17 MCP Tools"
echo "🔬 Powered by IOWarp.ai"
echo "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━"
echo
echo "📖 /warpio-help | /warpio-expert-list | /warpio-status"
echo

View File

@@ -0,0 +1,128 @@
#!/usr/bin/env python3
"""
Generate comprehensive session summary at workflow completion.
Only runs when WARPIO_LOG=true.
"""
import json
import sys
import os
from datetime import datetime
from pathlib import Path
from collections import defaultdict
def parse_transcript(transcript_path):
"""Parse transcript for workflow summary."""
summary = {
'experts_used': set(),
'mcps_by_expert': defaultdict(set),
'total_mcp_calls': 0,
'orchestration_pattern': 'single',
'files_processed': set(),
'performance_metrics': {}
}
try:
with open(transcript_path, 'r') as f:
lines = f.readlines()
for line in lines:
try:
data = json.loads(line)
# Track expert usage
if 'subagent_type' in str(data):
expert = data.get('subagent_type', '')
summary['experts_used'].add(expert)
# Track MCP usage
if 'tool_name' in data:
tool = data['tool_name']
if tool.startswith('mcp__'):
summary['total_mcp_calls'] += 1
# Determine expert from context
parts = tool.split('__')
if len(parts) >= 2:
server = parts[1]
# Map MCP to likely expert
if server in ['hdf5', 'adios', 'parquet']:
summary['mcps_by_expert']['data-expert'].add(tool)
elif server in ['plot', 'pandas']:
summary['mcps_by_expert']['analysis-expert'].add(tool)
elif server in ['darshan', 'node_hardware']:
summary['mcps_by_expert']['hpc-expert'].add(tool)
elif server in ['arxiv', 'context7']:
summary['mcps_by_expert']['research-expert'].add(tool)
# Track files
if 'file_path' in str(data):
if isinstance(data, dict) and 'tool_input' in data:
file_path = data['tool_input'].get('file_path', '')
if file_path:
summary['files_processed'].add(file_path)
except:
continue
# Determine orchestration pattern
if len(summary['experts_used']) > 1:
summary['orchestration_pattern'] = 'multi-expert'
# Convert sets to lists for JSON serialization
summary['experts_used'] = list(summary['experts_used'])
summary['files_processed'] = list(summary['files_processed'])
summary['mcps_by_expert'] = {k: list(v) for k, v in summary['mcps_by_expert'].items()}
except:
pass
return summary
def main():
"""Generate session summary with minimal overhead."""
# Only run if logging enabled
if not os.getenv('WARPIO_LOG'):
sys.exit(0)
try:
input_data = json.load(sys.stdin)
session_id = input_data.get('session_id', '')
transcript = input_data.get('transcript_path', '')
# Parse transcript for summary
summary = parse_transcript(transcript)
# Add metadata
summary['session_id'] = session_id
summary['timestamp'] = datetime.now().isoformat()
summary['warpio_version'] = os.getenv('WARPIO_VERSION', '1.0.0')
# Write summary
log_dir = Path(os.getenv('WARPIO_LOG_DIR', '.warpio-logs'))
session_dir = log_dir / f"session-{datetime.now().strftime('%Y%m%d-%H%M%S')}"
session_dir.mkdir(parents=True, exist_ok=True)
with open(session_dir / 'session-summary.json', 'w') as f:
json.dump(summary, f, indent=2)
# Also create human-readable summary
with open(session_dir / 'summary.md', 'w') as f:
f.write(f"# Warpio Session Summary\n\n")
f.write(f"**Session ID**: {session_id}\n")
f.write(f"**Timestamp**: {summary['timestamp']}\n\n")
f.write(f"## Orchestration\n")
f.write(f"- Pattern: {summary['orchestration_pattern']}\n")
f.write(f"- Experts Used: {', '.join(summary['experts_used'])}\n")
f.write(f"- Total MCP Calls: {summary['total_mcp_calls']}\n\n")
f.write(f"## Files Processed\n")
for file in summary['files_processed'][:10]: # First 10
f.write(f"- {file}\n")
if len(summary['files_processed']) > 10:
f.write(f"- ... and {len(summary['files_processed']) - 10} more\n")
except:
pass # Silent fail
sys.exit(0)
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,72 @@
#!/usr/bin/env python3
"""
Log expert results and MCP usage at subagent completion.
Only runs when WARPIO_LOG=true.
"""
import json
import sys
import os
from datetime import datetime
from pathlib import Path
def extract_expert_info(transcript_path):
"""Extract expert type and MCP usage from transcript."""
expert_name = "unknown"
mcps_used = []
try:
# Parse transcript to identify expert and MCPs
# This is simplified - in production would parse the JSONL properly
with open(transcript_path, 'r') as f:
for line in f:
if 'subagent_type' in line:
data = json.loads(line)
expert_name = data.get('subagent_type', 'unknown')
if 'tool_name' in line and 'mcp__' in line:
data = json.loads(line)
tool = data.get('tool_name', '')
if tool.startswith('mcp__'):
mcps_used.append(tool)
except:
pass
return expert_name, list(set(mcps_used))
def main():
"""Log expert completion with minimal overhead."""
# Only run if logging enabled
if not os.getenv('WARPIO_LOG'):
sys.exit(0)
try:
input_data = json.load(sys.stdin)
session_id = input_data.get('session_id', '')
transcript = input_data.get('transcript_path', '')
# Extract expert info from transcript
expert_name, mcps_used = extract_expert_info(transcript)
# Create log entry
log_entry = {
'timestamp': datetime.now().isoformat(),
'session_id': session_id,
'expert': expert_name,
'mcps_used': mcps_used,
'mcp_count': len(mcps_used)
}
# Write to session log
log_dir = Path(os.getenv('WARPIO_LOG_DIR', '.warpio-logs'))
session_dir = log_dir / f"session-{datetime.now().strftime('%Y%m%d-%H%M%S')}"
session_dir.mkdir(parents=True, exist_ok=True)
with open(session_dir / 'expert-results.jsonl', 'a') as f:
f.write(json.dumps(log_entry) + '\n')
except:
pass # Silent fail to not disrupt workflow
sys.exit(0)
if __name__ == '__main__':
main()

47
hooks/hooks.json Normal file
View File

@@ -0,0 +1,47 @@
{
"SessionStart": [
{
"matcher": "startup|resume|clear",
"hooks": [
{
"type": "command",
"command": "${CLAUDE_PLUGIN_ROOT}/hooks/SessionStart/warpio-init.sh"
}
]
}
],
"SubagentStop": [
{
"hooks": [
{
"type": "command",
"command": "${CLAUDE_PLUGIN_ROOT}/hooks/SubagentStop/expert-result-logger.py",
"timeout": 5
}
]
}
],
"Stop": [
{
"hooks": [
{
"type": "command",
"command": "${CLAUDE_PLUGIN_ROOT}/hooks/Stop/session-summary-logger.py",
"timeout": 10
}
]
}
],
"PreCompact": [
{
"matcher": "manual|auto",
"hooks": [
{
"type": "command",
"command": "${CLAUDE_PLUGIN_ROOT}/hooks/PreCompact/workflow-checkpoint.py",
"timeout": 5
}
]
}
]
}

189
plugin.lock.json Normal file
View File

@@ -0,0 +1,189 @@
{
"$schema": "internal://schemas/plugin.lock.v1.json",
"pluginId": "gh:akougkas/claude-code-4-science:warpio",
"normalized": {
"repo": null,
"ref": "refs/tags/v20251128.0",
"commit": "851fcb2f4ba1a8196b36d8ebf97e4a69ceb118a7",
"treeHash": "6b1760312ac2892902d15f553cef28e57a536f1c07d5fced418bf60f1bcc6870",
"generatedAt": "2025-11-28T10:13:07.345330Z",
"toolVersion": "publish_plugins.py@0.2.0"
},
"origin": {
"remote": "git@github.com:zhongweili/42plugin-data.git",
"branch": "master",
"commit": "aa1497ed0949fd50e99e70d6324a29c5b34f9390",
"repoRoot": "/Users/zhongweili/projects/openmind/42plugin-data"
},
"manifest": {
"name": "warpio",
"description": "Scientific computing orchestration with AI experts, MCP tools, and HPC automation",
"version": "0.1.0"
},
"content": {
"files": [
{
"path": "README.md",
"sha256": "e3c21ec6b320759f0935d70b9af800c8af513969d653eea5867967d45c606416"
},
{
"path": "agents/yaml-output-expert.md",
"sha256": "1ead7de45b78e8dd26a5113a3e6f5296c661938da7ac9ddee0912a976bd8f254"
},
{
"path": "agents/workflow-expert.md",
"sha256": "ebb879e46a44626ab6da6237c73ea5f9cf7b4782c8ef887d672b9ae84754d085"
},
{
"path": "agents/genomics-expert.md",
"sha256": "ef94173b492fd6d05b221c98458a3648fbd3104f51166498d4da98b04104407b"
},
{
"path": "agents/data-expert.md",
"sha256": "a86434b188e03f3af37c226c6daefd90746af5ddd8fb774ae22afea38141ac37"
},
{
"path": "agents/analysis-expert.md",
"sha256": "8e94aa51425cf4bcf3539eb6e26df6d468000c674eacc81b6af8e636f2b0bb78"
},
{
"path": "agents/hpc-expert.md",
"sha256": "62ad4716d3c4406de39bead0c3e880db5e261805b31e5be77f58e963273d6f24"
},
{
"path": "agents/research-writing-expert.md",
"sha256": "9d1e5782d273a55839d6b29806f8fc18facc9172ec333faac1ffc918d07896b3"
},
{
"path": "agents/materials-science-expert.md",
"sha256": "66958d2b7e5662d32381d53b3739507a783009db551c22030ce4929a44da4139"
},
{
"path": "agents/data-analysis-expert.md",
"sha256": "54147dc8b152137158984aa62bafdf12423b49ccf1385209d4ab71d5fecb9e86"
},
{
"path": "agents/scientific-computing-expert.md",
"sha256": "39a5d8e1033e6a40311718ded1a28a8983f915a1ceaead4ef500eca12520d0c2"
},
{
"path": "agents/research-expert.md",
"sha256": "3249584b9d9c7e7a16114bd263b433c7d47f215acab95a570cdbce8d1bf4f9bc"
},
{
"path": "agents/markdown-output-expert.md",
"sha256": "d2b3ae40f712dc9c5d35e669c09f6eece81aa9faa51b95eaa5707127d6228d85"
},
{
"path": "agents/hpc-data-management-expert.md",
"sha256": "70e18b5ec395f4e008b66cdf8fc8dea735ebd49d50c2fd0e10cdd91e3c0f034a"
},
{
"path": "hooks/hooks.json",
"sha256": "ae61c44f28faeb4b424eb807af96f2abe89a1a39194d2d4b763b36770298ca6c"
},
{
"path": "hooks/SubagentStop/expert-result-logger.py",
"sha256": "850e049b0a9313dc4397e4e20014223516898e6d30f097e5e35f93ee681e83c8"
},
{
"path": "hooks/Stop/session-summary-logger.py",
"sha256": "8cd70e0d6d2afec457c416231cbb425eb555f4437fef37d643715189cb754a1a"
},
{
"path": "hooks/PreCompact/workflow-checkpoint.py",
"sha256": "1b5713e489871f2a69cb4b1d7c1c8e5e615f574fe50db6ae5c102ec3130011f6"
},
{
"path": "hooks/SessionStart/warpio-init.sh",
"sha256": "e61fe8c34fd1f636919cd83df8c84438bc53152f22f525b69aa733791a15e83f"
},
{
"path": ".claude-plugin/plugin.json",
"sha256": "4628003feb26c29bb4b26b49fada88ca9a6d0a70cdbf7cccfbc0686302c339b4"
},
{
"path": "commands/warpio-config-setup.md",
"sha256": "eb613bf2d17465ab566f45833219e2181bad2d7796b0f6f8fc7353d19ec3c70f"
},
{
"path": "commands/warpio-local-status.md",
"sha256": "4973bf705836f065fa81ad606d8bad044cea57c826c2578f68cc6a9895c0a542"
},
{
"path": "commands/warpio-learn.md",
"sha256": "bc3664df1dfd50fb7cf37a78e825832d2322d31f62b5667fe3b4aba7e23bfe39"
},
{
"path": "commands/warpio-local-test.md",
"sha256": "31eed8d57b45aa47adbed6c814f72bb341065bf5479c3a30e5a9f6ea1c60166e"
},
{
"path": "commands/warpio-help-config.md",
"sha256": "dfa7c5177a146afa42ec99fd5162f0b0ef0fc5db323c2f4eccc3876077c2b20f"
},
{
"path": "commands/warpio-config-validate.md",
"sha256": "c5240bf8ae29d4cec6c0e2efcbceb1405115e4758c11ca0bc22282b7147df5d9"
},
{
"path": "commands/warpio-help-experts.md",
"sha256": "bbd108cb832405e7e0c1e6e33c21f78466f597943a97d4d483079991c77d7d06"
},
{
"path": "commands/warpio-workflow-status.md",
"sha256": "f56b5030431567e220669b505b298466a8e043cac2bf52777da2d3f65f368af8"
},
{
"path": "commands/warpio-status.md",
"sha256": "8b6d95ade7d57b5ed5a1e09fcf9d3721b8c3ea71c4af6756450fb2f5774ebb92"
},
{
"path": "commands/warpio-help.md",
"sha256": "e052f76834a379356995f90779f22c5dca8c477d5da4f7313d67918705be3e67"
},
{
"path": "commands/warpio-workflow-delete.md",
"sha256": "4097142822df0d47d2357e38e729ea257e80746a27c951f10955bbe05f7d0ea2"
},
{
"path": "commands/warpio-expert-delegate.md",
"sha256": "2f65d2e7229a64282a604abf44fd24dcba9beac4e44ce9528f40272b6c063e20"
},
{
"path": "commands/warpio-workflow-create.md",
"sha256": "14da62bd2e3d9976e4bafa90f12c156bbaabb76965df219003db197761e9ddc8"
},
{
"path": "commands/warpio-workflow-edit.md",
"sha256": "83d44ae79a24d5fa1670a5485b1bd08cb14b45aa229611c1cbaf0691c2b1290d"
},
{
"path": "commands/warpio-help-local.md",
"sha256": "0a9e85648b7503ba5135a44c127081ae3414917fb88cb03309e39979a937dc51"
},
{
"path": "commands/warpio-expert-list.md",
"sha256": "e679d251509d042944a0a3353716ce1124537df57cb48e03aba68eb97eee70aa"
},
{
"path": "commands/warpio-config-reset.md",
"sha256": "f1d547f5edb20ded5e5de4534c05fe2e037f77255bbc3772d2f18fe44245cc05"
},
{
"path": "commands/warpio-expert-status.md",
"sha256": "88ff457c5585814edc3bd626d875608032e70ef908c7467b019f76b72c071062"
},
{
"path": "commands/warpio-local-config.md",
"sha256": "607f9cbd60effc3c6e2544b7d0951cce2c93bb6d5c8f921ec8df347ae6ef4c57"
}
],
"dirSha256": "6b1760312ac2892902d15f553cef28e57a536f1c07d5fced418bf60f1bcc6870"
},
"security": {
"scannedAt": null,
"scannerVersion": null,
"flags": []
}
}