Initial commit
This commit is contained in:
185
commands/warpio-help-local.md
Normal file
185
commands/warpio-help-local.md
Normal file
@@ -0,0 +1,185 @@
|
||||
---
|
||||
description: Detailed help for Warpio local AI management
|
||||
allowed-tools: Read
|
||||
---
|
||||
|
||||
# Warpio Local AI Help
|
||||
|
||||
## Local AI Overview
|
||||
|
||||
Warpio uses local AI providers for quick, cost-effective, and low-latency tasks while reserving Claude (the main AI) for complex reasoning and planning.
|
||||
|
||||
## Supported Providers
|
||||
|
||||
### 🤖 LM Studio (Recommended)
|
||||
**Best for:** Most users with GPU-enabled systems
|
||||
|
||||
**Setup:**
|
||||
1. Download from https://lmstudio.ai
|
||||
2. Install models (qwen3-4b-instruct-2507 recommended)
|
||||
3. Start local server on port 1234
|
||||
4. Configure in Warpio with `/warpio-local-config`
|
||||
|
||||
**Configuration:**
|
||||
```bash
|
||||
LOCAL_AI_PROVIDER=lmstudio
|
||||
LMSTUDIO_API_URL=http://192.168.86.20:1234/v1
|
||||
LMSTUDIO_MODEL=qwen3-4b-instruct-2507
|
||||
LMSTUDIO_API_KEY=lm-studio
|
||||
```
|
||||
|
||||
### 🦙 Ollama
|
||||
**Best for:** CPU-only systems or alternative models
|
||||
|
||||
**Setup:**
|
||||
1. Install Ollama from https://ollama.ai
|
||||
2. Pull models: `ollama pull llama3.2`
|
||||
3. Start service: `ollama serve`
|
||||
4. Configure in Warpio
|
||||
|
||||
**Configuration:**
|
||||
```bash
|
||||
LOCAL_AI_PROVIDER=ollama
|
||||
OLLAMA_API_URL=http://localhost:11434/v1
|
||||
OLLAMA_MODEL=llama3.2
|
||||
```
|
||||
|
||||
## Local AI Commands
|
||||
|
||||
### Check Status
|
||||
```bash
|
||||
/warpio-local-status
|
||||
```
|
||||
Shows connection status, response times, and capabilities.
|
||||
|
||||
### Configure Provider
|
||||
```bash
|
||||
/warpio-local-config
|
||||
```
|
||||
Interactive setup for LM Studio, Ollama, or custom providers.
|
||||
|
||||
### Test Connection
|
||||
```bash
|
||||
/warpio-local-test
|
||||
```
|
||||
Tests connectivity, authentication, and basic functionality.
|
||||
|
||||
## When to Use Local AI
|
||||
|
||||
### ✅ Ideal for Local AI
|
||||
- **Quick Analysis:** Statistical summaries, data validation
|
||||
- **Format Conversion:** HDF5→Parquet, data restructuring
|
||||
- **Documentation:** Code documentation, README generation
|
||||
- **Simple Queries:** Lookups, basic explanations
|
||||
- **Real-time Tasks:** Interactive analysis, quick iterations
|
||||
|
||||
### ✅ Best for Claude (Main AI)
|
||||
- **Complex Reasoning:** Multi-step problem solving
|
||||
- **Creative Tasks:** Brainstorming, design decisions
|
||||
- **Deep Analysis:** Comprehensive research and planning
|
||||
- **Large Tasks:** Code generation, architectural decisions
|
||||
- **Context-Heavy:** Tasks requiring extensive conversation history
|
||||
|
||||
## Performance Optimization
|
||||
|
||||
### Speed Benefits
|
||||
- **Local Processing:** No network latency
|
||||
- **Direct Access:** Immediate response to local resources
|
||||
- **Optimized Hardware:** Uses your local GPU/CPU efficiently
|
||||
|
||||
### Cost Benefits
|
||||
- **No API Costs:** Free for local model inference
|
||||
- **Scalable:** Run multiple models simultaneously
|
||||
- **Privacy:** Data stays on your machine
|
||||
|
||||
## Configuration Examples
|
||||
|
||||
### Basic LM Studio Setup
|
||||
```bash
|
||||
# .env file
|
||||
LOCAL_AI_PROVIDER=lmstudio
|
||||
LMSTUDIO_API_URL=http://localhost:1234/v1
|
||||
LMSTUDIO_MODEL=qwen3-4b-instruct-2507
|
||||
LMSTUDIO_API_KEY=lm-studio
|
||||
```
|
||||
|
||||
### Advanced LM Studio Setup
|
||||
```bash
|
||||
# .env file
|
||||
LOCAL_AI_PROVIDER=lmstudio
|
||||
LMSTUDIO_API_URL=http://192.168.1.100:1234/v1
|
||||
LMSTUDIO_MODEL=qwen3-8b-instruct
|
||||
LMSTUDIO_API_KEY=your-custom-key
|
||||
```
|
||||
|
||||
### Ollama Setup
|
||||
```bash
|
||||
# .env file
|
||||
LOCAL_AI_PROVIDER=ollama
|
||||
OLLAMA_API_URL=http://localhost:11434/v1
|
||||
OLLAMA_MODEL=llama3.2:8b
|
||||
```
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Connection Issues
|
||||
**Problem:** "Connection failed"
|
||||
- Check if LM Studio/Ollama is running
|
||||
- Verify API URL is correct
|
||||
- Check firewall settings
|
||||
- Try different port
|
||||
|
||||
**Problem:** "Authentication failed"
|
||||
- Verify API key matches server configuration
|
||||
- Check API key format
|
||||
- Ensure proper permissions
|
||||
|
||||
### Performance Issues
|
||||
**Problem:** "Slow response times"
|
||||
- Check system resources (CPU/GPU usage)
|
||||
- Verify model is loaded in memory
|
||||
- Consider using a smaller/faster model
|
||||
- Close other resource-intensive applications
|
||||
|
||||
### Model Issues
|
||||
**Problem:** "Model not found"
|
||||
- Check model name spelling
|
||||
- Verify model is installed and available
|
||||
- Try listing available models
|
||||
- Reinstall model if corrupted
|
||||
|
||||
## Integration with Experts
|
||||
|
||||
Local AI is automatically used by experts for appropriate tasks:
|
||||
|
||||
- **Data Expert:** Quick format validation, metadata extraction
|
||||
- **Analysis Expert:** Statistical summaries, basic plotting
|
||||
- **Research Expert:** Literature search, citation formatting
|
||||
- **Workflow Expert:** Pipeline validation, simple automation
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. **Start Simple:** Use default configurations initially
|
||||
2. **Test Thoroughly:** Use `/warpio-local-test` after changes
|
||||
3. **Monitor Performance:** Check `/warpio-local-status` regularly
|
||||
4. **Choose Right Model:** Balance speed vs. capability
|
||||
5. **Keep Updated:** Update models periodically for best performance
|
||||
|
||||
## Advanced Configuration
|
||||
|
||||
### Custom API Endpoints
|
||||
```bash
|
||||
# For custom OpenAI-compatible APIs
|
||||
LOCAL_AI_PROVIDER=custom
|
||||
CUSTOM_API_URL=https://your-api-endpoint/v1
|
||||
CUSTOM_API_KEY=your-api-key
|
||||
CUSTOM_MODEL=your-model-name
|
||||
```
|
||||
|
||||
### Multiple Models
|
||||
You can configure different models for different tasks by updating the `.env` file and restarting your local AI provider.
|
||||
|
||||
### Resource Management
|
||||
- Monitor GPU/CPU usage during intensive tasks
|
||||
- Adjust model parameters for your hardware
|
||||
- Use model quantization for better performance on limited hardware
|
||||
Reference in New Issue
Block a user