Initial commit

This commit is contained in:
Zhongwei Li
2025-11-29 17:51:02 +08:00
commit ff1f4bd119
252 changed files with 72682 additions and 0 deletions

View File

@@ -0,0 +1,550 @@
# Reference Document Template
This file demonstrates how to structure detailed reference material that Claude loads on-demand.
**When to use this reference**: Include a clear statement about when Claude should consult this document.
For example: "Consult this reference when analyzing Python code for security vulnerabilities and needing detailed remediation patterns."
**Document purpose**: Briefly explain what this reference provides that's not in SKILL.md.
---
## Table of Contents
**For documents >100 lines, always include a table of contents** to help Claude navigate quickly.
- [When to Use References](#when-to-use-references)
- [Document Organization](#document-organization)
- [Detailed Technical Content](#detailed-technical-content)
- [Security Framework Mappings](#security-framework-mappings)
- [OWASP Top 10](#owasp-top-10)
- [CWE Mappings](#cwe-mappings)
- [MITRE ATT&CK](#mitre-attck)
- [Remediation Patterns](#remediation-patterns)
- [Advanced Configuration](#advanced-configuration)
- [Examples and Code Samples](#examples-and-code-samples)
---
## When to Use References
**Move content from SKILL.md to references/** when:
1. **Content exceeds 100 lines** - Keep SKILL.md concise
2. **Framework-specific details** - Detailed OWASP/CWE/MITRE mappings
3. **Advanced user content** - Deep technical details for expert users
4. **Lookup-oriented content** - Rule libraries, configuration matrices, comprehensive lists
5. **Language-specific patterns** - Separate files per language/framework
6. **Historical context** - Old patterns and deprecated approaches
**Keep in SKILL.md**:
- Core workflows (top 3-5 use cases)
- Decision points and branching logic
- Quick start guidance
- Essential security considerations
---
## Document Organization
### Structure for Long Documents
For references >100 lines:
```markdown
# Title
**When to use**: Clear trigger statement
**Purpose**: What this provides
## Table of Contents
- Links to all major sections
## Quick Reference
- Key facts or commands for fast lookup
## Detailed Content
- Comprehensive information organized logically
## Framework Mappings
- OWASP, CWE, MITRE ATT&CK references
## Examples
- Code samples and patterns
```
### Section Naming Conventions
- Use **imperative** or **declarative** headings
- ✅ "Detecting SQL Injection" not "How to detect SQL Injection"
- ✅ "Common Patterns" not "These are common patterns"
- Make headings **searchable** and **specific**
---
## Detailed Technical Content
This section demonstrates the type of detailed content that belongs in references rather than SKILL.md.
### Example: Comprehensive Vulnerability Detection
#### SQL Injection Detection Patterns
**Pattern 1: String Concatenation in Queries**
```python
# Vulnerable pattern
query = "SELECT * FROM users WHERE id = " + user_id
cursor.execute(query)
# Detection criteria:
# - SQL keyword (SELECT, INSERT, UPDATE, DELETE)
# - String concatenation operator (+, f-string)
# - Variable user input (request params, form data)
# Severity: HIGH
# CWE: CWE-89
# OWASP: A03:2021 - Injection
```
**Remediation**:
```python
# Fixed: Parameterized query
query = "SELECT * FROM users WHERE id = ?"
cursor.execute(query, (user_id,))
# OR using ORM
user = User.objects.get(id=user_id)
```
**Pattern 2: Unsafe String Formatting**
```python
# Vulnerable patterns
query = f"SELECT * FROM users WHERE name = '{username}'"
query = "SELECT * FROM users WHERE name = '%s'" % username
query = "SELECT * FROM users WHERE name = '{}'".format(username)
# All three patterns are vulnerable to SQL injection
```
#### Cross-Site Scripting (XSS) Detection
**Pattern 1: Unescaped Output in Templates**
```javascript
// Vulnerable: Direct HTML injection
element.innerHTML = userInput;
document.write(userInput);
// Vulnerable: React dangerouslySetInnerHTML
<div dangerouslySetInnerHTML={{__html: userComment}} />
// Detection criteria:
# - Direct DOM manipulation (innerHTML, document.write)
# - React dangerouslySetInnerHTML with user data
# - Template engines with autoescaping disabled
// Severity: HIGH
// CWE: CWE-79
// OWASP: A03:2021 - Injection
```
**Remediation**:
```javascript
// Fixed: Escaped output
element.textContent = userInput; // Auto-escapes
// Fixed: Sanitization library
import DOMPurify from 'dompurify';
const clean = DOMPurify.sanitize(userComment);
<div dangerouslySetInnerHTML={{__html: clean}} />
```
---
## Security Framework Mappings
This section provides comprehensive security framework mappings for findings.
### OWASP Top 10
Map security findings to OWASP Top 10 (2021) categories:
| Category | Title | Common Vulnerabilities |
|----------|-------|----------------------|
| **A01:2021** | Broken Access Control | Authorization bypass, privilege escalation, IDOR |
| **A02:2021** | Cryptographic Failures | Weak crypto, plaintext storage, insecure TLS |
| **A03:2021** | Injection | SQL injection, XSS, command injection, LDAP injection |
| **A04:2021** | Insecure Design | Missing security controls, threat modeling gaps |
| **A05:2021** | Security Misconfiguration | Default configs, verbose errors, unnecessary features |
| **A06:2021** | Vulnerable Components | Outdated libraries, unpatched dependencies |
| **A07:2021** | Auth & Session Failures | Weak passwords, session fixation, missing MFA |
| **A08:2021** | Software & Data Integrity | Unsigned updates, insecure CI/CD, deserialization |
| **A09:2021** | Logging & Monitoring Failures | Insufficient logging, no alerting, log injection |
| **A10:2021** | SSRF | Server-side request forgery, unvalidated redirects |
**Usage**: When reporting findings, map to primary OWASP category and reference the identifier (e.g., "A03:2021 - Injection").
### CWE Mappings
Map to relevant Common Weakness Enumeration categories for precise vulnerability classification:
#### Injection Vulnerabilities
- **CWE-78**: OS Command Injection
- **CWE-79**: Cross-site Scripting (XSS)
- **CWE-89**: SQL Injection
- **CWE-90**: LDAP Injection
- **CWE-91**: XML Injection
- **CWE-94**: Code Injection
#### Authentication & Authorization
- **CWE-287**: Improper Authentication
- **CWE-288**: Authentication Bypass Using Alternate Path
- **CWE-290**: Authentication Bypass by Spoofing
- **CWE-294**: Authentication Bypass by Capture-replay
- **CWE-306**: Missing Authentication for Critical Function
- **CWE-307**: Improper Restriction of Excessive Authentication Attempts
- **CWE-352**: Cross-Site Request Forgery (CSRF)
#### Cryptographic Issues
- **CWE-256**: Plaintext Storage of Password
- **CWE-259**: Use of Hard-coded Password
- **CWE-261**: Weak Encoding for Password
- **CWE-321**: Use of Hard-coded Cryptographic Key
- **CWE-326**: Inadequate Encryption Strength
- **CWE-327**: Use of Broken or Risky Cryptographic Algorithm
- **CWE-329**: Not Using a Random IV with CBC Mode
- **CWE-798**: Use of Hard-coded Credentials
#### Input Validation
- **CWE-20**: Improper Input Validation
- **CWE-73**: External Control of File Name or Path
- **CWE-434**: Unrestricted Upload of File with Dangerous Type
- **CWE-601**: URL Redirection to Untrusted Site
#### Sensitive Data Exposure
- **CWE-200**: Information Exposure
- **CWE-209**: Information Exposure Through Error Message
- **CWE-312**: Cleartext Storage of Sensitive Information
- **CWE-319**: Cleartext Transmission of Sensitive Information
- **CWE-532**: Information Exposure Through Log Files
**Usage**: Include CWE identifier in all vulnerability reports for standardized classification.
### MITRE ATT&CK
Reference relevant tactics and techniques for threat context:
#### Initial Access (TA0001)
- **T1190**: Exploit Public-Facing Application
- **T1133**: External Remote Services
- **T1078**: Valid Accounts
#### Execution (TA0002)
- **T1059**: Command and Scripting Interpreter
- **T1203**: Exploitation for Client Execution
#### Persistence (TA0003)
- **T1098**: Account Manipulation
- **T1136**: Create Account
- **T1505**: Server Software Component
#### Privilege Escalation (TA0004)
- **T1068**: Exploitation for Privilege Escalation
- **T1548**: Abuse Elevation Control Mechanism
#### Defense Evasion (TA0005)
- **T1027**: Obfuscated Files or Information
- **T1140**: Deobfuscate/Decode Files or Information
- **T1562**: Impair Defenses
#### Credential Access (TA0006)
- **T1110**: Brute Force
- **T1555**: Credentials from Password Stores
- **T1552**: Unsecured Credentials
#### Discovery (TA0007)
- **T1083**: File and Directory Discovery
- **T1046**: Network Service Scanning
#### Collection (TA0009)
- **T1005**: Data from Local System
- **T1114**: Email Collection
#### Exfiltration (TA0010)
- **T1041**: Exfiltration Over C2 Channel
- **T1567**: Exfiltration Over Web Service
**Usage**: When identifying vulnerabilities, consider which ATT&CK techniques an attacker could use to exploit them.
---
## Remediation Patterns
This section provides specific remediation guidance for common vulnerability types.
### SQL Injection Remediation
**Step 1: Identify vulnerable queries**
- Search for string concatenation in SQL queries
- Check for f-strings or format() with SQL keywords
- Review all database interaction code
**Step 2: Apply parameterized queries**
```python
# Python with sqlite3
cursor.execute("SELECT * FROM users WHERE id = ?", (user_id,))
# Python with psycopg2 (PostgreSQL)
cursor.execute("SELECT * FROM users WHERE id = %s", (user_id,))
# Python with SQLAlchemy (ORM)
from sqlalchemy import text
result = session.execute(text("SELECT * FROM users WHERE id = :id"), {"id": user_id})
```
**Step 3: Validate and sanitize input** (defense in depth)
```python
import re
# Validate input format
if not re.match(r'^\d+$', user_id):
raise ValueError("Invalid user ID format")
# Use ORM query builders
user = User.query.filter_by(id=user_id).first()
```
**Step 4: Implement least privilege**
- Database user should have minimum required permissions
- Use read-only accounts for SELECT operations
- Never use admin/root accounts for application queries
### XSS Remediation
**Step 1: Enable auto-escaping**
- Most modern frameworks escape by default
- Ensure auto-escaping is not disabled
**Step 2: Use framework-specific safe methods**
```javascript
// React: Use JSX (auto-escapes)
<div>{userInput}</div>
// Vue: Use template syntax (auto-escapes)
<div>{{ userInput }}</div>
// Angular: Use property binding (auto-escapes)
<div [textContent]="userInput"></div>
```
**Step 3: Sanitize when HTML is required**
```javascript
import DOMPurify from 'dompurify';
// Sanitize HTML content
const clean = DOMPurify.sanitize(userHTML, {
ALLOWED_TAGS: ['b', 'i', 'em', 'strong', 'p'],
ALLOWED_ATTR: []
});
```
**Step 4: Content Security Policy (CSP)**
```html
<!-- Add CSP header -->
Content-Security-Policy: default-src 'self'; script-src 'self' 'nonce-{random}'
```
---
## Advanced Configuration
This section contains detailed configuration options and tuning parameters.
### Example: SAST Tool Configuration
```yaml
# Advanced security scanner configuration
scanner:
# Severity threshold
severity_threshold: MEDIUM
# Rule configuration
rules:
enabled:
- sql-injection
- xss
- hardcoded-secrets
disabled:
- informational-only
# False positive reduction
confidence_threshold: HIGH
exclude_patterns:
- "*/test/*"
- "*/tests/*"
- "*/node_modules/*"
- "*.test.js"
- "*.spec.ts"
# Performance tuning
max_file_size_kb: 2048
timeout_seconds: 300
parallel_jobs: 4
# Output configuration
output_format: json
include_code_snippets: true
max_snippet_lines: 10
```
---
## Examples and Code Samples
This section provides comprehensive code examples for various scenarios.
### Example 1: Secure API Authentication
```python
# Secure API key handling
import os
from functools import wraps
from flask import Flask, request, jsonify
app = Flask(__name__)
# Load API key from environment (never hardcode)
VALID_API_KEY = os.environ.get('API_KEY')
if not VALID_API_KEY:
raise ValueError("API_KEY environment variable not set")
def require_api_key(f):
@wraps(f)
def decorated_function(*args, **kwargs):
api_key = request.headers.get('X-API-Key')
if not api_key:
return jsonify({'error': 'API key required'}), 401
# Constant-time comparison to prevent timing attacks
import hmac
if not hmac.compare_digest(api_key, VALID_API_KEY):
return jsonify({'error': 'Invalid API key'}), 403
return f(*args, **kwargs)
return decorated_function
@app.route('/api/secure-endpoint')
@require_api_key
def secure_endpoint():
return jsonify({'message': 'Access granted'})
```
### Example 2: Secure Password Hashing
```python
# Secure password storage with bcrypt
import bcrypt
def hash_password(password: str) -> str:
"""Hash a password using bcrypt."""
# Generate salt and hash password
salt = bcrypt.gensalt(rounds=12) # Cost factor: 12 (industry standard)
hashed = bcrypt.hashpw(password.encode('utf-8'), salt)
return hashed.decode('utf-8')
def verify_password(password: str, hashed: str) -> bool:
"""Verify a password against a hash."""
return bcrypt.checkpw(
password.encode('utf-8'),
hashed.encode('utf-8')
)
# Usage
stored_hash = hash_password("user_password")
is_valid = verify_password("user_password", stored_hash) # True
```
### Example 3: Secure File Upload
```python
# Secure file upload with validation
import os
import magic
from werkzeug.utils import secure_filename
ALLOWED_EXTENSIONS = {'pdf', 'png', 'jpg', 'jpeg'}
ALLOWED_MIME_TYPES = {
'application/pdf',
'image/png',
'image/jpeg'
}
MAX_FILE_SIZE = 5 * 1024 * 1024 # 5 MB
def is_allowed_file(filename: str, file_content: bytes) -> bool:
"""Validate file extension and MIME type."""
# Check extension
if '.' not in filename:
return False
ext = filename.rsplit('.', 1)[1].lower()
if ext not in ALLOWED_EXTENSIONS:
return False
# Check MIME type (prevent extension spoofing)
mime = magic.from_buffer(file_content, mime=True)
if mime not in ALLOWED_MIME_TYPES:
return False
return True
def handle_upload(file):
"""Securely handle file upload."""
# Check file size
file.seek(0, os.SEEK_END)
size = file.tell()
file.seek(0)
if size > MAX_FILE_SIZE:
raise ValueError("File too large")
# Read content for validation
content = file.read()
file.seek(0)
# Validate file type
if not is_allowed_file(file.filename, content):
raise ValueError("Invalid file type")
# Sanitize filename
filename = secure_filename(file.filename)
# Generate unique filename to prevent overwrite attacks
import uuid
unique_filename = f"{uuid.uuid4()}_{filename}"
# Save to secure location (outside web root)
upload_path = os.path.join('/secure/uploads', unique_filename)
file.save(upload_path)
return unique_filename
```
---
## Best Practices for Reference Documents
1. **Start with "When to use"** - Help Claude know when to load this reference
2. **Include table of contents** - For documents >100 lines
3. **Use concrete examples** - Code samples with vulnerable and fixed versions
4. **Map to frameworks** - OWASP, CWE, MITRE ATT&CK for context
5. **Provide remediation** - Don't just identify issues, show how to fix them
6. **Organize logically** - Group related content, use clear headings
7. **Keep examples current** - Use modern patterns and current framework versions
8. **Be concise** - Even in references, challenge every sentence

View File

@@ -0,0 +1,253 @@
# Workflow Checklist Template
This template demonstrates workflow patterns for security operations. Copy and adapt these checklists to your specific skill needs.
## Pattern 1: Sequential Workflow Checklist
Use this pattern for operations that must be completed in order, step-by-step.
### Security Assessment Workflow
Progress:
[ ] 1. Identify application entry points and attack surface
[ ] 2. Map authentication and authorization flows
[ ] 3. Identify data flows and sensitive data handling
[ ] 4. Review existing security controls
[ ] 5. Document findings with framework references (OWASP, CWE)
[ ] 6. Prioritize findings by severity (CVSS scores)
[ ] 7. Generate report with remediation recommendations
Work through each step systematically. Check off completed items.
---
## Pattern 2: Conditional Workflow
Use this pattern when the workflow branches based on findings or conditions.
### Vulnerability Remediation Workflow
1. Identify vulnerability type
- If SQL Injection → See [sql-injection-remediation.md](sql-injection-remediation.md)
- If XSS (Cross-Site Scripting) → See [xss-remediation.md](xss-remediation.md)
- If Authentication flaw → See [auth-remediation.md](auth-remediation.md)
- If Authorization flaw → See [authz-remediation.md](authz-remediation.md)
- If Cryptographic issue → See [crypto-remediation.md](crypto-remediation.md)
2. Assess severity using CVSS calculator
- If CVSS >= 9.0 → Priority: Critical (immediate action)
- If CVSS 7.0-8.9 → Priority: High (action within 24h)
- If CVSS 4.0-6.9 → Priority: Medium (action within 1 week)
- If CVSS < 4.0 → Priority: Low (action within 30 days)
3. Apply appropriate remediation pattern
4. Validate fix with security testing
5. Document changes and update security documentation
---
## Pattern 3: Iterative Workflow
Use this pattern for operations that repeat across multiple targets or items.
### Code Security Review Workflow
For each file in the review scope:
1. Identify security-sensitive operations (auth, data access, crypto, input handling)
2. Check against secure coding patterns for the language
3. Flag potential vulnerabilities with severity rating
4. Map findings to CWE and OWASP categories
5. Suggest specific remediation approaches
6. Document finding with code location and fix priority
Continue until all files in scope have been reviewed.
---
## Pattern 4: Feedback Loop Workflow
Use this pattern when validation and iteration are required.
### Secure Configuration Generation Workflow
1. Generate initial security configuration based on requirements
2. Run validation script: `./scripts/validate_config.py config.yaml`
3. Review validation output:
- Note all errors (must fix)
- Note all warnings (should fix)
- Note all info items (consider)
4. Fix identified issues in configuration
5. Repeat steps 2-4 until validation passes with zero errors
6. Review warnings and determine if they should be addressed
7. Apply configuration once validation is clean
**Validation Loop**: Run validator → Fix errors → Repeat until clean
---
## Pattern 5: Parallel Analysis Workflow
Use this pattern when multiple independent analyses can run concurrently.
### Comprehensive Security Scan Workflow
Run these scans in parallel:
**Static Analysis**:
[ ] 1a. Run SAST scan (Semgrep/Bandit)
[ ] 1b. Run dependency vulnerability scan (Safety/npm audit)
[ ] 1c. Run secrets detection (Gitleaks/TruffleHog)
[ ] 1d. Run license compliance check
**Dynamic Analysis**:
[ ] 2a. Run DAST scan (ZAP/Burp)
[ ] 2b. Run API security testing
[ ] 2c. Run authentication/authorization testing
**Infrastructure Analysis**:
[ ] 3a. Run infrastructure-as-code scan (Checkov/tfsec)
[ ] 3b. Run container image scan (Trivy/Grype)
[ ] 3c. Run configuration review
**Consolidation**:
[ ] 4. Aggregate all findings
[ ] 5. Deduplicate and correlate findings
[ ] 6. Prioritize by risk (CVSS + exploitability + business impact)
[ ] 7. Generate unified security report
---
## Pattern 6: Research and Documentation Workflow
Use this pattern for security research and documentation tasks.
### Threat Modeling Workflow
Research Progress:
[ ] 1. Identify system components and boundaries
[ ] 2. Map data flows between components
[ ] 3. Identify trust boundaries
[ ] 4. Enumerate assets (data, services, credentials)
[ ] 5. Apply STRIDE framework to each component:
- Spoofing threats
- Tampering threats
- Repudiation threats
- Information disclosure threats
- Denial of service threats
- Elevation of privilege threats
[ ] 6. Map threats to MITRE ATT&CK techniques
[ ] 7. Identify existing mitigations
[ ] 8. Document residual risks
[ ] 9. Recommend additional security controls
[ ] 10. Generate threat model document
Work through each step systematically. Check off completed items.
---
## Pattern 7: Compliance Validation Workflow
Use this pattern for compliance checks against security standards.
### Security Compliance Audit Workflow
**SOC 2 Controls Review**:
[ ] 1. Review access control policies (CC6.1, CC6.2, CC6.3)
[ ] 2. Verify logical access controls implementation (CC6.1)
[ ] 3. Review authentication mechanisms (CC6.1)
[ ] 4. Verify encryption implementation (CC6.1, CC6.7)
[ ] 5. Review audit logging configuration (CC7.2)
[ ] 6. Verify security monitoring (CC7.2, CC7.3)
[ ] 7. Review incident response procedures (CC7.3, CC7.4)
[ ] 8. Verify backup and recovery processes (A1.2, A1.3)
**Evidence Collection**:
[ ] 9. Collect policy documents
[ ] 10. Collect configuration screenshots
[ ] 11. Collect audit logs
[ ] 12. Document control gaps
[ ] 13. Generate compliance report
---
## Pattern 8: Incident Response Workflow
Use this pattern for security incident handling.
### Security Incident Response Workflow
**Detection and Analysis**:
[ ] 1. Confirm security incident (rule out false positive)
[ ] 2. Determine incident severity (SEV1/2/3/4)
[ ] 3. Identify affected systems and data
[ ] 4. Preserve evidence (logs, memory dumps, network captures)
**Containment**:
[ ] 5. Isolate affected systems (network segmentation)
[ ] 6. Disable compromised accounts
[ ] 7. Block malicious indicators (IPs, domains, hashes)
[ ] 8. Implement temporary compensating controls
**Eradication**:
[ ] 9. Identify root cause
[ ] 10. Remove malicious artifacts (malware, backdoors, webshells)
[ ] 11. Patch vulnerabilities exploited
[ ] 12. Reset compromised credentials
**Recovery**:
[ ] 13. Restore systems from clean backups (if needed)
[ ] 14. Re-enable systems with monitoring
[ ] 15. Verify system integrity
[ ] 16. Resume normal operations
**Post-Incident**:
[ ] 17. Document incident timeline
[ ] 18. Identify lessons learned
[ ] 19. Update security controls to prevent recurrence
[ ] 20. Update incident response procedures
[ ] 21. Communicate with stakeholders
---
## Usage Guidelines
### When to Use Workflow Checklists
**Use checklists for**:
- Complex multi-step operations
- Operations requiring specific order
- Security assessments and audits
- Incident response procedures
- Compliance validation tasks
**Don't use checklists for**:
- Simple single-step operations
- Highly dynamic exploratory work
- Operations that vary significantly each time
### Adapting This Template
1. **Copy relevant pattern** to your skill's SKILL.md or create new reference file
2. **Customize steps** to match your specific security tool or process
3. **Add framework references** (OWASP, CWE, NIST) where applicable
4. **Include tool-specific commands** for automation
5. **Add decision points** where manual judgment is required
### Checklist Best Practices
- **Be specific**: "Run semgrep --config=auto ." not "Scan the code"
- **Include success criteria**: "Validation passes with 0 errors"
- **Reference standards**: Link to OWASP, CWE, NIST where relevant
- **Show progress**: Checkbox format helps track completion
- **Provide escape hatches**: "If validation fails, see troubleshooting.md"
### Integration with Feedback Loops
Combine checklists with validation scripts for maximum effectiveness:
1. Create checklist for the workflow
2. Provide validation script that checks quality
3. Include "run validator" step in checklist
4. Loop: Complete step → Validate → Fix issues → Re-validate
This pattern dramatically improves output quality through systematic validation.

View File

@@ -0,0 +1,225 @@
# CISA Known Exploited Vulnerabilities (KEV) Catalog
CISA's Known Exploited Vulnerabilities (KEV) catalog identifies CVEs with confirmed active exploitation in the wild.
## Table of Contents
- [What is KEV](#what-is-kev)
- [Why KEV Matters](#why-kev-matters)
- [KEV in Grype](#kev-in-grype)
- [Remediation Urgency](#remediation-urgency)
- [Federal Requirements](#federal-requirements)
## What is KEV
The Cybersecurity and Infrastructure Security Agency (CISA) maintains a catalog of vulnerabilities that:
1. Have **confirmed active exploitation** in real-world attacks
2. Present **significant risk** to federal enterprise and critical infrastructure
3. Require **prioritized remediation**
**Key Points**:
- KEV listings indicate **active, ongoing exploitation**, not theoretical risk
- Being in KEV catalog means attackers have weaponized the vulnerability
- KEV CVEs should be treated as **highest priority** regardless of CVSS score
## Why KEV Matters
### Active Threat Indicator
**KEV presence means**:
- Exploit code is publicly available or in active use by threat actors
- Attackers are successfully exploiting this vulnerability
- Your organization is likely a target if running vulnerable software
### Prioritization Signal
**CVSS vs KEV**:
- CVSS: Theoretical severity based on technical characteristics
- KEV: Proven real-world exploitation
**Example**:
- CVE with CVSS 6.5 (Medium) but KEV listing → **Prioritize over CVSS 9.0 (Critical) without KEV**
- Active exploitation trumps theoretical severity
### Compliance Requirement
**BOD 22-01**: Federal agencies must remediate KEV vulnerabilities within specified timeframes
- Many commercial organizations adopt similar policies
- SOC2, PCI-DSS, and other frameworks increasingly reference KEV
## KEV in Grype
### Detecting KEV in Scans
Grype includes KEV data in vulnerability assessments:
```bash
# Standard scan includes KEV indicators
grype <image> -o json > results.json
# Check for KEV matches
grep -i "kev" results.json
```
**Grype output indicators**:
- `dataSource` field may include KEV references
- Some vulnerabilities explicitly marked as CISA KEV
### Filtering KEV Vulnerabilities
Use the prioritization script to extract KEV matches:
```bash
./scripts/prioritize_cves.py results.json
```
Output shows `[KEV]` indicator for confirmed KEV vulnerabilities.
### Automated KEV Alerting
Integrate KEV detection into CI/CD:
```bash
# Fail build on any KEV vulnerability
grype <image> -o json | \
jq '.matches[] | select(.vulnerability.dataSource | contains("KEV"))' | \
jq -s 'if length > 0 then error("KEV vulnerabilities found") else empty end'
```
## Remediation Urgency
### BOD 22-01 Timeframes
CISA Binding Operational Directive 22-01 requires:
| Vulnerability Type | Remediation Deadline |
|-------------------|---------------------|
| KEV listed before directive | 2 weeks from BOD publication |
| Newly added KEV | 2 weeks from KEV addition |
| Critical KEV (discretionary) | Immediate (24-48 hours) |
### Commercial Best Practices
**Recommended SLAs for KEV vulnerabilities**:
1. **Immediate Response (0-24 hours)**:
- Assess exposure and affected systems
- Implement temporary mitigations (disable feature, block network access)
- Notify security leadership and stakeholders
2. **Emergency Patching (24-48 hours)**:
- Deploy patches to production systems
- Validate remediation with re-scan
- Document patch deployment
3. **Validation and Monitoring (48-72 hours)**:
- Verify all instances patched
- Check logs for exploitation attempts
- Update detection rules and threat intelligence
### Temporary Mitigations
If immediate patching is not possible:
**Network-Level Controls**:
- Block external access to vulnerable services
- Segment vulnerable systems from critical assets
- Deploy Web Application Firewall (WAF) rules
**Application-Level Controls**:
- Disable vulnerable features or endpoints
- Implement additional authentication requirements
- Enable enhanced logging and monitoring
**Operational Controls**:
- Increase security monitoring for affected systems
- Deploy compensating detective controls
- Schedule emergency maintenance window
## Federal Requirements
### Binding Operational Directive 22-01
**Scope**: All federal civilian executive branch (FCEB) agencies
**Requirements**:
1. Remediate KEV vulnerabilities within required timeframes
2. Report remediation status to CISA
3. Document exceptions and compensating controls
**Penalties**: Non-compliance may result in:
- Required reporting to agency leadership
- Escalation to Office of Management and Budget (OMB)
- Potential security authorization impacts
### Extending to Commercial Organizations
Many commercial organizations adopt KEV-based policies:
**Rationale**:
- KEV represents highest-priority threats
- Federal government invests in threat intelligence
- Following KEV reduces actual breach risk
**Implementation**:
- Monitor KEV catalog for relevant CVEs
- Integrate KEV data into vulnerability management
- Define internal KEV remediation SLAs
- Report KEV status to leadership and audit teams
## Monitoring KEV Updates
### CISA KEV Catalog
Access the catalog:
- **Web**: https://www.cisa.gov/known-exploited-vulnerabilities-catalog
- **JSON**: https://www.cisa.gov/sites/default/files/feeds/known_exploited_vulnerabilities.json
- **CSV**: https://www.cisa.gov/sites/default/files/csv/known_exploited_vulnerabilities.csv
### Automated Monitoring
Track new KEV additions:
```bash
# Download current KEV catalog
curl -s https://www.cisa.gov/sites/default/files/feeds/known_exploited_vulnerabilities.json \
-o kev-catalog.json
# Compare against previous download
diff kev-catalog-previous.json kev-catalog.json
```
**Subscribe to updates**:
- CISA cybersecurity alerts: https://www.cisa.gov/cybersecurity-alerts
- RSS feeds for KEV additions
- Security vendor threat intelligence feeds
## Response Workflow
### KEV Vulnerability Detected
Progress:
[ ] 1. **Identify** affected systems: Run Grype scan across all environments
[ ] 2. **Assess** exposure: Determine if vulnerable systems are internet-facing or critical
[ ] 3. **Contain** risk: Implement temporary mitigations (network blocks, feature disable)
[ ] 4. **Remediate**: Deploy patches or upgrades to all affected systems
[ ] 5. **Validate**: Re-scan with Grype to confirm vulnerability resolved
[ ] 6. **Monitor**: Review logs for exploitation attempts during vulnerable window
[ ] 7. **Document**: Record timeline, actions taken, and lessons learned
Work through each step systematically. Check off completed items.
### Post-Remediation Analysis
After resolving KEV vulnerability:
1. **Threat Hunting**: Search logs for indicators of compromise (IOC)
2. **Root Cause**: Determine why vulnerable software was deployed
3. **Process Improvement**: Update procedures to prevent recurrence
4. **Reporting**: Notify stakeholders and compliance teams
## References
- [CISA KEV Catalog](https://www.cisa.gov/known-exploited-vulnerabilities-catalog)
- [BOD 22-01: Reducing the Significant Risk of Known Exploited Vulnerabilities](https://www.cisa.gov/news-events/directives/bod-22-01-reducing-significant-risk-known-exploited-vulnerabilities)
- [KEV Catalog JSON Feed](https://www.cisa.gov/sites/default/files/feeds/known_exploited_vulnerabilities.json)
- [CISA Cybersecurity Alerts](https://www.cisa.gov/cybersecurity-alerts)

View File

@@ -0,0 +1,210 @@
# CVSS Severity Rating Guide
Common Vulnerability Scoring System (CVSS) is a standardized framework for rating vulnerability severity.
## Table of Contents
- [CVSS Score Ranges](#cvss-score-ranges)
- [Severity Ratings](#severity-ratings)
- [CVSS Metrics](#cvss-metrics)
- [Interpreting Scores](#interpreting-scores)
- [Remediation SLAs](#remediation-slas)
## CVSS Score Ranges
| CVSS Score | Severity Rating | Description |
|------------|----------------|-------------|
| 0.0 | None | No vulnerability |
| 0.1 - 3.9 | Low | Minimal security impact |
| 4.0 - 6.9 | Medium | Moderate security impact |
| 7.0 - 8.9 | High | Significant security impact |
| 9.0 - 10.0 | Critical | Severe security impact |
## Severity Ratings
### Critical (9.0 - 10.0)
**Characteristics**:
- Trivial to exploit
- No user interaction required
- Remote code execution or complete system compromise
- Affects default configurations
**Examples**:
- Unauthenticated remote code execution
- Critical SQL injection allowing full database access
- Authentication bypass in critical services
**Action**: Remediate immediately (within 24-48 hours)
### High (7.0 - 8.9)
**Characteristics**:
- Easy to exploit with moderate skill
- May require user interaction or specific conditions
- Significant data exposure or privilege escalation
- Affects common configurations
**Examples**:
- Authenticated remote code execution
- Cross-site scripting (XSS) in privileged contexts
- Privilege escalation vulnerabilities
**Action**: Remediate within 7 days
### Medium (4.0 - 6.9)
**Characteristics**:
- Requires specific conditions or elevated privileges
- Limited impact or scope
- May require local access or user interaction
**Examples**:
- Information disclosure of non-sensitive data
- Denial of service with mitigating factors
- Cross-site request forgery (CSRF)
**Action**: Remediate within 30 days
### Low (0.1 - 3.9)
**Characteristics**:
- Difficult to exploit
- Minimal security impact
- Requires significant user interaction or unlikely conditions
**Examples**:
- Information leakage of minimal data
- Low-impact denial of service
- Security misconfigurations with limited exposure
**Action**: Remediate within 90 days or next maintenance cycle
## CVSS Metrics
CVSS v3.1 scores are calculated from three metric groups:
### Base Metrics (Primary Factors)
**Attack Vector (AV)**:
- Network (N): Remotely exploitable
- Adjacent (A): Requires local network access
- Local (L): Requires local system access
- Physical (P): Requires physical access
**Attack Complexity (AC)**:
- Low (L): No specialized conditions required
- High (H): Requires specific conditions or expert knowledge
**Privileges Required (PR)**:
- None (N): No authentication needed
- Low (L): Basic user privileges required
- High (H): Administrator privileges required
**User Interaction (UI)**:
- None (N): No user interaction required
- Required (R): Requires user action (e.g., clicking a link)
**Scope (S)**:
- Unchanged (U): Vulnerability affects only the vulnerable component
- Changed (C): Vulnerability affects resources beyond the vulnerable component
**Impact Metrics** (Confidentiality, Integrity, Availability):
- None (N): No impact
- Low (L): Limited impact
- High (H): Total or serious impact
### Temporal Metrics (Optional)
Time-dependent factors:
- Exploit Code Maturity
- Remediation Level
- Report Confidence
### Environmental Metrics (Optional)
Organization-specific factors:
- Modified Base Metrics
- Confidentiality/Integrity/Availability Requirements
## Interpreting Scores
### Context Matters
CVSS scores should be interpreted in context:
**High-Value Systems**: Escalate severity for:
- Production systems
- Customer-facing applications
- Systems handling PII or financial data
- Critical infrastructure
**Low-Value Systems**: May de-prioritize for:
- Development/test environments
- Internal tools with limited access
- Deprecated systems scheduled for decommission
### Complementary Metrics
Consider alongside CVSS:
**EPSS (Exploit Prediction Scoring System)**:
- Probability (0-100%) that a vulnerability will be exploited in the wild
- High EPSS + High CVSS = Urgent remediation
**CISA KEV (Known Exploited Vulnerabilities)**:
- Active exploitation confirmed in the wild
- KEV presence overrides CVSS - remediate immediately
**Reachability**:
- Is the vulnerable code path actually executed?
- Is the vulnerable dependency directly or transitively included?
## Remediation SLAs
### Industry Standard SLA Examples
| Severity | Timeframe | Priority |
|----------|-----------|----------|
| Critical | 24-48 hours | P0 - Drop everything |
| High | 7 days | P1 - Next sprint |
| Medium | 30 days | P2 - Planned work |
| Low | 90 days | P3 - Maintenance cycle |
### Adjusted for Exploitability
**If CISA KEV or EPSS > 50%**:
- Reduce timeframe by 50%
- Example: High (7 days) → 3-4 days
**If proof-of-concept exists**:
- Treat High as Critical
- Treat Medium as High
**If actively exploited**:
- All severities become Critical (immediate remediation)
## False Positives and Suppressions
Not all reported vulnerabilities require immediate action:
### Valid Suppression Reasons
- **Not Reachable**: Vulnerable code path not executed
- **Mitigated**: Compensating controls in place (WAF, network segmentation)
- **Not Affected**: Version mismatch or platform-specific vulnerability
- **Risk Accepted**: Business decision with documented justification
### Documentation Requirements
For all suppressions:
1. CVE ID and affected package
2. Detailed justification
3. Approver and approval date
4. Review/expiration date (quarterly recommended)
5. Compensating controls if applicable
## References
- [CVSS v3.1 Specification](https://www.first.org/cvss/specification-document)
- [CVSS Calculator](https://www.first.org/cvss/calculator/3.1)
- [NVD CVSS Severity Distribution](https://nvd.nist.gov/vuln/severity-distribution)

View File

@@ -0,0 +1,510 @@
# Vulnerability Remediation Patterns
Common patterns for remediating dependency vulnerabilities detected by Grype.
## Table of Contents
- [General Remediation Strategies](#general-remediation-strategies)
- [Package Update Patterns](#package-update-patterns)
- [Base Image Updates](#base-image-updates)
- [Dependency Pinning](#dependency-pinning)
- [Compensating Controls](#compensating-controls)
- [Language-Specific Patterns](#language-specific-patterns)
## General Remediation Strategies
### Strategy 1: Direct Dependency Update
**When to use**: Vulnerability in a directly declared dependency
**Pattern**:
1. Identify fixed version from Grype output
2. Update dependency version in manifest file
3. Test application compatibility
4. Re-scan to verify fix
5. Deploy updated application
**Example**:
```bash
# Grype reports: lodash@4.17.15 has CVE-2020-8203, fixed in 4.17.19
# Update package.json
npm install lodash@4.17.19
npm test
grype dir:. --only-fixed
```
### Strategy 2: Transitive Dependency Update
**When to use**: Vulnerability in an indirect dependency
**Pattern**:
1. Identify which direct dependency includes the vulnerable package
2. Check if direct dependency has an update that resolves the issue
3. Update direct dependency or use dependency override mechanism
4. Re-scan to verify fix
**Example (npm)**:
```json
// package.json - Override transitive dependency
{
"overrides": {
"lodash": "^4.17.21"
}
}
```
**Example (pip)**:
```txt
# constraints.txt
lodash>=4.17.21
```
### Strategy 3: Base Image Update
**When to use**: Vulnerability in OS packages from container base image
**Pattern**:
1. Identify vulnerable OS package and fixed version
2. Update to newer base image tag or rebuild with package updates
3. Re-scan updated image
4. Test application on new base image
**Example**:
```dockerfile
# Before: Alpine 3.14 with vulnerable openssl
FROM alpine:3.14
# After: Alpine 3.19 with fixed openssl
FROM alpine:3.19
# Or: Explicit package update
FROM alpine:3.14
RUN apk upgrade --no-cache openssl
```
### Strategy 4: Patch or Backport
**When to use**: No fixed version available or update breaks compatibility
**Pattern**:
1. Research if security patch exists separately from full version update
2. Apply patch using package manager's patching mechanism
3. Consider backporting fix if feasible
4. Document patch and establish review schedule
**Example (npm postinstall)**:
```json
{
"scripts": {
"postinstall": "patch-package"
}
}
```
### Strategy 5: Compensating Controls
**When to use**: Fix not available and risk must be accepted
**Pattern**:
1. Document vulnerability and risk acceptance
2. Implement network, application, or operational controls
3. Enhance monitoring and detection
4. Schedule regular review (quarterly)
5. Track for future remediation when fix becomes available
## Package Update Patterns
### Pattern: Semantic Versioning Updates
**Minor/Patch Updates** (Generally Safe):
```bash
# Python: Update to latest patch version
pip install --upgrade 'package>=1.2.0,<1.3.0'
# Node.js: Update to latest minor version
npm update package
# Go: Update to latest patch
go get -u=patch github.com/org/package
```
**Major Updates** (Breaking Changes):
```bash
# Review changelog before updating
npm show package versions
pip index versions package
# Update and test thoroughly
npm install package@3.0.0
npm test
```
### Pattern: Lock File Management
**Update specific package**:
```bash
# npm
npm install package@latest
npm install # Update lock file
# pip
pip install --upgrade package
pip freeze > requirements.txt
# Go
go get -u github.com/org/package
go mod tidy
```
**Update all dependencies**:
```bash
# npm (interactive)
npm-check-updates --interactive
# pip
pip list --outdated | cut -d ' ' -f1 | xargs -n1 pip install -U
# Go
go get -u ./...
go mod tidy
```
## Base Image Updates
### Pattern: Minimal Base Images
**Reduce attack surface with minimal images**:
```dockerfile
# ❌ Large attack surface
FROM ubuntu:22.04
# ✅ Minimal attack surface
FROM alpine:3.19
# or
FROM gcr.io/distroless/base-debian12
# ✅ Minimal for specific language
FROM python:3.11-slim
FROM node:20-alpine
```
**Benefits**:
- Fewer packages = fewer vulnerabilities
- Smaller image size
- Faster scans
### Pattern: Multi-Stage Builds
**Separate build dependencies from runtime**:
```dockerfile
# Build stage with full toolchain
FROM node:20 AS builder
WORKDIR /app
COPY package*.json ./
RUN npm ci
COPY . .
RUN npm run build
# Production stage with minimal image
FROM node:20-alpine AS production
WORKDIR /app
COPY --from=builder /app/dist ./dist
COPY --from=builder /app/node_modules ./node_modules
USER node
CMD ["node", "dist/index.js"]
```
**Benefits**:
- Build tools not present in final image
- Reduced vulnerability exposure
- Smaller production image
### Pattern: Regular Base Image Updates
**Automate base image updates**:
```yaml
# Dependabot config for Dockerfile
version: 2
updates:
- package-ecosystem: "docker"
directory: "/"
schedule:
interval: "weekly"
```
**Manual update process**:
```bash
# Check for newer base image versions
docker pull alpine:3.19
docker images alpine
# Update Dockerfile
sed -i 's/FROM alpine:3.18/FROM alpine:3.19/' Dockerfile
# Rebuild and scan
docker build -t myapp:latest .
grype myapp:latest
```
## Dependency Pinning
### Pattern: Pin to Secure Versions
**Lock to known-good versions**:
```dockerfile
# ✅ Pin specific versions
FROM alpine:3.19.0@sha256:abc123...
# Install specific package versions
RUN apk add --no-cache \
ca-certificates=20240226-r0 \
openssl=3.1.4-r0
```
```json
// package.json - Exact versions
{
"dependencies": {
"express": "4.18.2",
"lodash": "4.17.21"
}
}
```
**Benefits**:
- Reproducible builds
- Controlled updates
- Prevent automatic vulnerability introduction
**Drawbacks**:
- Manual update effort
- May miss security patches
- Requires active maintenance
### Pattern: Range-Based Pinning
**Allow patch updates, lock major/minor**:
```json
// package.json - Allow patch updates
{
"dependencies": {
"express": "~4.18.2", // Allow 4.18.x
"lodash": "^4.17.21" // Allow 4.x.x
}
}
```
```python
# requirements.txt - Compatible releases
express>=4.18.2,<5.0.0
lodash>=4.17.21,<5.0.0
```
## Compensating Controls
### Pattern: Network Segmentation
**Isolate vulnerable systems**:
```yaml
# Docker Compose network isolation
services:
vulnerable-service:
image: myapp:vulnerable
networks:
- internal
# No external port exposure
gateway:
image: nginx:alpine
ports:
- "80:80"
networks:
- internal
- external
networks:
internal:
internal: true
external:
```
**Benefits**:
- Limits attack surface
- Contains potential breaches
- Buys time for proper remediation
### Pattern: Web Application Firewall (WAF)
**Block exploit attempts at perimeter**:
```nginx
# ModSecurity/OWASP Core Rule Set
location / {
modsecurity on;
modsecurity_rules_file /etc/nginx/modsec/main.conf;
proxy_pass http://vulnerable-backend;
}
```
**Virtual Patching**:
- Create WAF rules for specific CVEs
- Block known exploit patterns
- Monitor for exploitation attempts
### Pattern: Runtime Application Self-Protection (RASP)
**Detect and prevent exploitation at runtime**:
```python
# Example: Add input validation
def process_user_input(data):
# Validate against known exploit patterns
if contains_sql_injection(data):
log_security_event("SQL injection attempt blocked")
raise SecurityException("Invalid input")
return sanitize_input(data)
```
## Language-Specific Patterns
### Python
**Update vulnerable package**:
```bash
# Check for vulnerabilities
grype dir:/path/to/project -o json
# Update package
pip install --upgrade vulnerable-package
# Freeze updated dependencies
pip freeze > requirements.txt
# Verify fix
grype dir:/path/to/project
```
**Use constraints files**:
```bash
# constraints.txt
vulnerable-package>=1.2.3 # CVE-2024-XXXX fixed
# Install with constraints
pip install -r requirements.txt -c constraints.txt
```
### Node.js
**Update vulnerable package**:
```bash
# Check for vulnerabilities
npm audit
grype dir:. -o json
# Fix automatically (if possible)
npm audit fix
# Manual update
npm install package@version
# Verify fix
npm audit
grype dir:.
```
**Override transitive dependencies**:
```json
{
"overrides": {
"vulnerable-package": "^2.0.0"
}
}
```
### Go
**Update vulnerable module**:
```bash
# Check for vulnerabilities
go list -m all | grype
# Update specific module
go get -u github.com/org/vulnerable-module
# Update all modules
go get -u ./...
# Verify and tidy
go mod tidy
grype dir:.
```
### Java/Maven
**Update vulnerable dependency**:
```xml
<!-- pom.xml - Update version -->
<dependency>
<groupId>org.example</groupId>
<artifactId>vulnerable-lib</artifactId>
<version>2.0.0</version> <!-- Updated from 1.0.0 -->
</dependency>
```
**Force dependency version**:
```xml
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.example</groupId>
<artifactId>vulnerable-lib</artifactId>
<version>2.0.0</version>
</dependency>
</dependencies>
</dependencyManagement>
```
### Rust
**Update vulnerable crate**:
```bash
# Check for vulnerabilities
cargo audit
grype dir:. -o json
# Update specific crate
cargo update -p vulnerable-crate
# Update all crates
cargo update
# Verify fix
cargo audit
grype dir:.
```
## Verification Workflow
After applying any remediation:
Progress:
[ ] 1. **Re-scan**: Run Grype scan to verify vulnerability resolved
[ ] 2. **Test**: Execute test suite to ensure no functionality broken
[ ] 3. **Document**: Record CVE, fix applied, and verification results
[ ] 4. **Deploy**: Roll out fix to affected environments
[ ] 5. **Monitor**: Watch for related security issues or regressions
Work through each step systematically. Check off completed items.
## References
- [npm Security Best Practices](https://docs.npmjs.com/security-best-practices)
- [Python Packaging Security](https://packaging.python.org/en/latest/guides/security/)
- [Go Modules Security](https://go.dev/blog/vuln)
- [OWASP Dependency Check](https://owasp.org/www-project-dependency-check/)